
A Learning and Control Perspective for Microfinance

Anonymous submission

Abstract

Microfinance, despite its significant potential for poverty re-
duction, is facing sustainability hardships due to high default
rates. Although many methods in regular finance can esti-
mate credit scores and default probabilities, these methods are
not directly applicable to microfinance due to the following
unique characteristics: a) under-explored (developing) areas
such as rural Africa do not have sufficient prior loan data for
microfinance institutions (MFIs) to establish a credit scoring
system; b) microfinance applicants may have difficulty pro-
viding sufficient information for MFIs to accurately predict
default probabilities; and c) many MFIs use group liability
(instead of collateral) to secure repayment. Here, we present a
novel control-theoretic model of microfinance that accounts
for these characteristics. We construct an algorithm to learn
microfinance decision policies that achieve financial inclusion,
fairness, social welfare, and sustainability. We characterize
the convergence conditions to Pareto-optimum and the conver-
gence speeds. We demonstrate, in numerous real and synthetic
datasets, that the proposed method accounts for the complex-
ities induced by group liability to produce robust decisions
before sufficient loans are given to establish credit scoring
systems and for applicants whose default probability cannot
be accurately estimated due to missing information. To the
best of our knowledge, this paper is the first to connect microfi-
nance and control theory. We envision that the connection will
enable safe learning and control techniques to help modernize
microfinance and alleviate poverty.

1 Introduction
Potential and challenges in microfinance. Microfinance is
a category of financial services that gives small loans to low-
income people who may not have access to or be eligible for
conventional finance (Yunus 2007; Armendáriz and Morduch
2010; Kamanza 2014). Microfinance has demonstrated poten-
tial for poverty reduction, financial inclusion, and economic
development (Schreiner 2001; Mersland and Strøm 2010).
Despite the proven potential, microfinance has experienced
several hardships, primarily due to increasing loan default
rates (Nawai and Shariff 2012; Addae-Korankye 2014).

Although there are many lending strategies and risk control
methods in regular finance, they cannot be directly applied to
microfinance for the following reasons. First, most existing
methods use credit scores to predict the loan default prob-
ability when making lending decisions (Ala’raj and Abbod

2016; Shi et al. 2019; Ampountolas et al. 2021). However,
under-explored (developing) areas without prior loan his-
tories or proper financial systems have insufficient data to
establish such credit-scoring procedures. Second, due to the
lack of proper state mechanisms, it is difficult for some ap-
plicants to provide sufficient information for estimating their
credit scores and default probability accurately1. Third, reg-
ular loans are given to individuals with collateral, whereas
microfinance often uses group liability, without collateral, to
secure repayment (Lehner 2009; Kodongo and Kendi 2013;
Haldar and Stiglitz 2016). Group liability can improve the
repayment rate by incentivizing members to look after each
other, but it has the pitfalls of inducing defaults for borrowers
who otherwise have the ability to repay. However, because
the approaches for granting regular loans do not sufficiently
account for the complexities of group liability, group loans
have tended to result in greater default rates (Nandhi 2012;
Allen 2016). Fourth, there is increasing evidence that loan
approval algorithms based on black-box machine learning
techniques may be biased and discriminatory against minori-
ties (Zliobaite 2015; Corbett-Davies and Goel 2018). Such bi-
ases are particularly problematic in fulfilling the objectives of
microfinance to provide more opportunities for disadvantaged
populations and underdeveloped regions. The complexities
of having multiple such populations/regions also imposed
additional challenges in allocating microfinance resources
to balance different fairness/inclusion objectives. Due to the
lack of methodologies that can systematically balance the
risks, fairness, and multi-faceted objectives of microfinance,
microfinance has relied heavily on the judgment of loan offi-
cers. Such operations have sometimes resulted in decisions
that let Portfolio at Risk (PAR)2 exceed a level that is sustain-
able for continuing microfinance operations3 (Yimga 2016;
Huo and Fu 2017; Chikalipah 2018).

Our focus and contributions. There is an urgent need
to modernize microfinance by establishing models and algo-
rithms that account for the aforementioned characteristics
and challenges. In this paper, we establish a novel micro-
finance model and propose an algorithm for learning loan

1 For example, it may be costly for some applicants in Africa to
obtain proof of residence.

2PAR is defined as the percentage of overdue loans.
3World Bank suggested 5% as the upper bound of PAR for

sustainability (Ledgerwood, Earne, and Nelson 2013).



approval policies. We summarize the features of the proposed
techniques below.
1. Our methods can make robust decisions before enough

loans are given to accurately estimate the default probabil-
ity and credit scores (Figure 2b) by directly learning the
optimal policy parameters without the intermediate step
of default probability estimation.

2. Our methods degrade more gracefully for increasing lev-
els of missing information in the applications (Figure 2a)
and exploit the potential of group liability while avoiding
its pitfalls (Figure 2e). The microfinance model accounts
for missing information and group liability, and policy
learning processes converge to optimal policy parameters
in the presence of both.

3. Our methods can systematically optimize competing ob-
jectives such as risks, socio-economic impacts, and active
and passive fairness among different groups (Figures 2i
and 2k). The prioritization among different objectives
can be specified in the utility function, and the policy
has an interpretable structure that informs which factors
contributed positively/negatively to applicant approvals.

To the best of our knowledge, this paper is the first to use
control-theoretic techniques to learn microfinance policy pa-
rameters without relying on credit scores directly. Our pre-
sentation of microfinance models as a control problem opens
the door to using modern control and learning theory to mod-
ernize microfinance, which in turn helps to achieve 8 of 17
Sustainable Development Goals adopted by the United Na-
tions.

Figure 1: Features of the proposed algorithm and their tech-
nical enablers.

2 Problem Statement
In this section, we introduce a novel microfinance model
and define the design objectives of the microfinance decision
policy.

Microfinance model: A microfinance application can be
modeled by application properties, an MFI’s decision, and

outcomes. The MFI receives applications from individuals or
groups of applicants. An application is parameterized by the
group size M (M = 1 for individual applicants), intrinsic
features that govern default probability S ∈ S , and the MFI’s
accessible information Ŝ ∈ Ŝ. When some information in
S is unavailable, it corresponds to the empty value ∅ entries
in Ŝ. The set of the available information in Ŝ is denoted
by U(Ŝ) = {j : Ŝ[j] ̸= ∅}. The MFI’s lending decision is
denoted by a random variable A:

A =

{
1 for approval,
0 for rejection.

(1)

The MFI’s approval/reject probability, P(A | Ŝ,M), for a
certain application is based on the lending policy πZ , i.e.,

P(A | Ŝ,M) = πZ(Ŝ,M,A). (2)

Here, πZ is controlled by policy parameter Z, defined later
in (12).

As the amount of loans given out by MFIs is normally
small for each individual, we assume the amount of loan and
its interest rate are identical among members within the group
and, without loss of generality, are set as 1 and r, respectively.
Thus, an approved application of group size M receives a
loan of size M and must return the principal and interest of
M · (r + 1) at the end of the lending period, where the loan
liability is imposed on the whole group. The outcome of the
loan (the ability of the applicant to return) is given by

B =

{
1 for return,
0 for default.

(3)

We assume S is independently drawn from some underlying
population feature distribution P(S); Ŝ is determined based
on how features are reflected in the accessible information
P(Ŝ | S); and the outcome of the application is governed by
P(B | S,M) = P(B | S, Ŝ,M), which does not depend on
Ŝ given S and M .

Microfinance decision criteria: We consider the setting
that MFI provides loans at each lending period, indexed
by t ∈ {1, 2, · · · , T}, and continuously learns more op-
timal policies over the time horizon T as follows. At the
beginning of each lending period, the MFI receives Nt fi-
nancing applications, indexed by i ∈ Nt = {1, 2, · · · , Nt}.
Application i has group size mi,t

i.i.d∼ P(M = mi,t), un-

observed underlying features si,t
i.i.d∼ P(S), and accessi-

ble information ŝi,t ∼ P(Ŝ | S = si,t). The MFI uses
policy πzt to decide on MFI’s action ai,t ∼ P(A | Ŝ =
ŝi,t, M = mi,t) = πzt(ŝi,t,mi,t, ai,t). At the end of
the lending period, the MFI observes the loan outcome
bi,t

i.i.d∼ P(B | S = si,t, M = mi,t) and learns (updates)
the policy parameter to zt+1, which is to be used in the next
lending period.4

4Throughout the paper, we use lower case letters
si,t, ŝi,t, ai,t, bi,t, to represent the specific realization of the
random variables S, Ŝ, A,B that are associated with application i
at time t; and zt represents the learned policy parameter at time t.



Microfinance has multifaceted (non-mutually exclusive)
objectives such as financial inclusion, fairness, social and
economic impact, and sustainability. These objectives are
captured by a utility function R({ŝi,t,mi,t, ai,t, bi,t}i∈Nt

)
of all applications i ∈ Nt (see Section 5 for the empirical
results for all these objectives).

We let V (zt) = E(R({ŝi,t,mi,t, ai,t, bi,t}i∈Nt
)) as the

expected utility of the lending period t with policy πzt and
control parameter zt. We then consider two types of utility
rewards: decomposable and non-decomposable.

Case 1: Decomposable rewards. In this scenario, we as-
sume all the features are non-biased and will not introduce
any discrimination into the decision-making process. There-
fore, the total reward at time t can be decomposed as the sum
of individual rewards, i.e.,

R ({si,t,mi,t, ai,t, bi,t}i∈Nt)

=
1

Nt

Nt∑
i=1

R (si,t,mi,t, ai,t, bi,t) , (4)

for some function R.

Case 2: Non-decomposable rewards. In this scenario, we
assume the total reward cannot be decomposed as the sum
of individual rewards. This case is particularly useful when
we design reward functions that account for fairness among
different demographics.

Accounting for fairness. Microfinance decisions should
be fair and avoid discriminating against certain populations
or regions. We consider the following three types of fairness.

Type 1 (Independence): Type 1 fairness ensures that certain
feature attributes will not affect the outcome of loan approval.
For example, it can capture the issues raised by (Martinez and
Kirchner 2021) where people with almost the same attributes
except their race have largely different approval rates. If
any two applications i1, i2 have identical information except
attribute ξ, then their approval probabilities are also identical,
i.e.,

P (ai1,t = 1 | ŝι, ŝξ,mi,t) = P (ai2,t = 1 | ŝι, ŝξ′ ,mi,t) ,
(5)

where ŝι represents identical information for both applica-
tions. One way to deal with the type 1 fairness issue is to
remove some features from the accessible information Ŝ. For
example, features such as gender, race, and ethnicity should
be removed before learning the lending decision. However,
even though straightforward bias features are deleted, other
features may be correlated with those bias features and lead
to discrimination. For example, even though we remove the
gender feature, other features such as occupation may be
correlated with gender. This motivates us to consider the
following two types of active fairness.

Type 2 (Outcome fairness): Type 2 fairness actively sets
a target approval rate Π∗(ξ) for the desire approval rate for
applications with attribute ξ. For example, the loan approval
policy has a target of at least Π∗ approval rate for female ap-
plicants as a criterion for gender equality. For type 2 fairness,
we want to have

P (ai,t = 1 | i ∈ Nt,ξ) ≥ Π∗(ξ),∀ξ ∈ Ξ, (6)

where Ξ = {ξ, ξ′, · · · } is the set of attributes for which
we have a target approval rate and Nt,ξ = {i ∈ N : i ∈
Nt, Ŝξ ∈ Ŝ} is the set of applications with attribute ξ at time
t. To achieve type 2 fairness, we can reformulate the reward
function as

R ({si,t,mi,t, ai,t, bi,t}i∈Nt
)

= other objectives −F2 ·
∑
ξ∈Ξ

(Π∗(ξ)− gξ,t)+ , (7)

where F2 ∈ R+ is a weighing factor, āξ,t =
1

|Nt,ξ|
∑

i∈Nt,ξ
ai,t be the current approval rate for applica-

tions with ξ, and we use the notion (x)+ to be max(0, x). A
larger F2 value indicates more emphasis is placed upon type
2 fairness.

Type 3 (Statistical parity): Type 3 fairness enforces fairness
among applications with different attributes, i.e., if we would
like to have type 3 fairness among applications with attributes
ξ and ξ′, then we should have

P (ai = 1 | i ∈ Gξ) ≈ P (ai = 1 | i ∈ Gξ′) . (8)

To enforce type 3 fairness, we can adjust our reward as,

R ({si,t,mi,t, ai,t, bi,t}i∈Nt
)

= other objectives −F3 · ∥gξ,t − gξ′,t∥, (9)

where a larger value of F3 indicates more emphasis is put on
type 3 fairness.

Policy learning objectives. The learning objective for the
policy is twofold. The first goal is to converge to the optimal
policy parameter,

z∗ = argmax
z

V (z). (10)

The second goal is to converge to the optimal policy fast with
low policy exploration cost, quantified by

V (z∗)− E

[
1

T

T∑
t=1

V (zt)

]
. (11)

The expectation in V (z) is taken over the probability measure
involving group liability and missing information. Thus, by
construction, the optimization of (10) and (11) also accounts
for the above-mentioned challenges. Additionally, we take
interpretability into the design consideration by imposing
structures in policy πz so that the parameter z informs how
much each entry of available information Ŝ and the group
size M have contributed toward approvals or denials.

3 Proposed Algorithm
Here, we will introduce novel learning techniques that can
produce optimal and fair microfinance decisions when credit-
scoring systems cannot function properly due to the scarcity
of prior loan data and the uncertainty of missing data. The
theoretical properties of the proposed techniques are derived
in the next section.

We propose a lending policy πz parameterized by

z = [ϕ⊺, ϵ⊺, γ⊺]⊺ ∈ Z ⊂ R2n+|Ξ|. (12)



We update the policy parameter zt according to:

ẑt+1 = zt + αtFzt , (13)
zt+1 = proj

Z
(ẑt+1). (14)

The value of αt > 0 is the step size to update the parameters
at lending period t. The choice of αt is crucial for the con-
vergence and learning speed of the algorithm and is studied
theoretically in Corollary 4.2 and empirically in Appendix D.
To make sure that the updated parameters stay in the allow-
able domain Z , step (14) projects ẑt+1 onto domain Z . We
then consider the decision policy

πz(ŝ,m, a) = L(q). (15)

L(q) can be any continuously-differentiable monotonically-
increasing function of q that map the domain of q to (0, 1).
For example, we consider the following choice of L(q):

L(q) =
2 exp(q)

1 + exp(q)
− 1. (16)

Here, L(q) can be thought of as the activation function of
the neural networks. However, the traditional approaches
to directly employing the neural networks for the lending
decisions can aggregate the biases toward the initial choice of
the approved applicants because populations who never get
loan approval are not contained in the data used to learn the
decision policy. Unlike the traditional approach, under our
proposed policy, people who are less likely to get approved
have a non-zero probability of approval to ensure diversity in
the training data.

For the decomposable rewards, we consider

q =
1

n

∑
j∈U(ŝ)

ϕ[j]ŝ[j] + ϵ[j]. (17)

In this case, z = [ϕ⊺, ϵ⊺, γ⊺] = [ϕ⊺, ϵ⊺] as γξ =
0,∀ξ and n is the number of features. Fzt =[
Fzt [1], Fzt [2], · · ·Fzt [2n]

]⊺
is given by

Fzt [k] =
1

Nt

Nt∑
i=1

wi,t[k]
(
R(ŝi,t,mi,t, ai,t, bi,t)− R̄t

)
,

(18)

wi,t[k] =
1

πzt(ŝi,t,mi,t, ai,t)

∂πz(ŝi,t,mi,t, ai,t)

∂z[k]
, (19)

R̄t =
1

t− 1

t−1∑
τ=1

1

Nτ

Nτ∑
i=1

R(ŝi,τ ,mi,τ , ai,τ , bi,τ ). (20)

Here,
∂πzt(ŝi,t,mi,t, ai,t)

∂z[k]
= g(ŝ, k)

dL(q)

dq
is the partial

derivative of πz(ŝi,t,mi,t, ai,t) with respect to the k-th entry
of z evaluated at zt, where g is defined to be

g(ŝ, k) =


ŝ[k]; k ≤ n, k ∈ U(ŝ),

1; k ≥ n+ 1, k ∈ U(ŝ),

0; otherwise.
(21)

For the non-decomposable rewards, we consider

q =
1

n

∑
j∈U(ŝ)

ϕ[j]ŝ[j] + ϵ[j] +
∑
ξ

γξ 1{ŝ ∈ Ŝξ}, (22)

where 1{ŝ ∈ Ŝξ} is an fairness indicator function
of (ŝ ∈ Ŝξ). Ŝξ refers to feature values that may
introduce discrimination in microfinance lending deci-
sions, such as gender, race, ethnicity, etc. In this case,
z = [ϕ⊺, ϵ⊺, γ⊺]⊺, γ = [γ1, γ2, γ3, · · · ]⊺, and Fzt =[
Fzt [1], Fzt [2], · · ·Fzt [2n], · · · , Fzt [2n+ |Ξ|]

]⊺
, where Fzt

is given by
Fzt [k] = R({si,t,mi,t, ai,t, bi,t}i∈Nt

)wt[k], (23)

wt[k] =

Nt∑
i=1

wi,t[k], (24)

wi,t[k] =
1

πzt(ŝi,t,mi,t, ai,t)

∂πz(ŝi,t,mi,t, ai,t)

∂z[k]
, (25)

R̄t =
1

t− 1

t−1∑
τ=1

R({si,t,mi,t, ai,t, bi,t}i∈Nt
). (26)

Here,
∂πzt(ŝi,t,mi,t, ai,t)

∂z[k]
= g(ŝ, k)

dL(q)

dq
with g is defined

to be

g(ŝ, k) =


ŝ[k]; k ≤ n, k ∈ U(ŝ),

1; n+ 1 ≤ k ≤ 2n, k ∈ U(ŝ),

γk−2n; 2n+ 1 ≤ k ≤ 2n+ |Ξ|,
0; otherwise.

(27)

In both cases, the value of R(ŝi,t,mi,t, ai,t, bi,t)− R̄t and
the update size of zt will become small when R̄t is suffi-
ciently close to the sample average. The above procedures
are summarized in Algorithm 1.

Algorithm 1: Policy Update

Initialized z1
for each lending period t do

for each application i do
Generate the decision of application i with:

ai,t =

{
1; with probability πzt(ŝi,t, 1),

0; with probability πzt(ŝi,t, 0).

Observe outcome bi,t ∈ {0, 1}.
Gain utility R(ŝi,t, ai,t, bi,t).

end for
Compute Fzt from (18) when choosing general case, or
(23) when choosing fairness case.
Update zt+1 based on (13) and (14).

end for

Our proposed algorithm considers the following objectives:
1. Financial inclusion and exploration. The stochastic policy

provides approval probability P(A|Ŝ) rather than a spe-
cific lending decision (approve or reject), which ensures
sufficient diversity in samples.



2. Account for missing data. The model contains parameter
ϵ[j] to differentiate zero-value data and empty data.

3. Fairness consideration for heterogeneous features. We
consider three types of fairness: independence, outcome
fairness, and statistical parity which may introduce dis-
crimination against applicants of certain types. We also
consider their solutions for the fair allocation of resources
for different groups of applicants.

4. Each piece of unbiased information contributes to the
policy. Each feature will either positively or negatively
contribute to the probability of approval.

5. Convergence under mild assumptions. Specifically, we
will show that the average utility approaches the optimum
in the long run (see Theorem 4.1 and Corollary 4.2).

6. Parameters learned directly from the algorithm.

4 Optimality and Convergence Analysis
This section provides conditions that ensure the proposed
algorithm converges to optimal parameters (Theorem 4.1).
Along the way, we explain the ideas behind the updating
rules (13) in Lemma 4.3. we also find an appropriate choice
for the step size αt in Corollary 4.2, based on the results of
Theorem 4.1.

Convergence condition. Algorithm 1 converges to the opti-
mal parameters when the following conditions are fulfilled:
1. L(q) is a concave function.
2. The set of admissible policy parameters Z satisfies

E
[
∥zt1 − zt2∥2

]
≤ D2, ∀zt1 , zt2 ∈ Z. (28)

3. The second moment of the stochastic gradient is bounded,

E
[
∥Fzt∥2 | zt

]
≤ G2. (29)

The convergence conditions are formally stated in the theo-
rem below.
Theorem 4.1. Assuming conditions 1, 2, and 3 hold, let C(T )
be defined by

C(T ) =

T∑
t=1

αt, (30)

and z∗ = (ϕ∗, ϵ∗, γ∗) be defined in (10). Then, Algorithm 1
gives the following performance:

E

[
T∑

t=1

(
V (z∗)− V (zt)

)]
≤

1

2

(
1

αT
D2 +G2C(T )

)
.

(31)

Theorem 4.1 gives the following relation between step size
and convergence speed.

Corollary 4.2. When step size is chosen to be αt =
D

G
√
t

,

we have

E

[
1

T

T∑
t=1

(V (z∗)− V (zt))

]
≤

3DG

2
√
T
. (32)

Theorem 4.1 relies on the property that

E [Fzt | zt] = ∇zV (zt). (33)

Lemma 4.3. When the total reward can be decomposed as
the sum of rewards from individual applicants as in (4), the
updating rules (13) and (14) given (18) - (21) satisfy (33).
Lemma 4.4. When the total reward cannot be decomposed as
the sum of rewards from individual applicants, the updating
rules (13) and (14) given (23) - (27) will also satisfy (33).

Here, from an online learning perspective, one can inter-
pret that the algorithm performs a form of stochastic gradient
on reward function V in the presence of missing information
where, from a control perspective, V (z) can be interpreted as
a Lyapunov function. From Theorem 4.1, optimization prob-
lem (10) converges to the optimal parameters as T → ∞
for the concave utility function. When the utility function of
interest is not concave, further care might be needed. The
Proposition 4.5 gives conditions under which the utility func-
tion is concave.
Proposition 4.5. If the approval probability L(q) is a con-
cave function of q, then the objective function V (z) is con-
cave in z.
The decision rule (16) in Section 2 is an example of concave
function in q over the positive domain. Proposition 4.5 and
condition 1 imply the expected rewards derived from concave
decision rules such as (16) are also concave. The proofs of
the above theorem, corollary, lemma, and proposition are
derived in the Appendix C.

5 Experiment and Results
We investigated the empirical behaviors of the proposed meth-
ods in a variety of settings. The performance of the proposed
algorithm was compared with the perceptron, credit score
based method, random forest, support vector machine (SVM),
and logistic regression (see Appendix D for their detailed
description). The application data was generated from more
than 30 different distributions. The distributions were con-
structed both randomly (see Tables 2 to 4) and from historical
loan application data (Dorfleitner and Oswald 2016; Hartley
2010). We considered the utility function in the following
form,

R(ŝ,m, a, b) =


m(r + e); a = 1, b = 1,

m(−1 + e); a = 1, b = 0,

0; a = 0.

(34)

Here, e ∈ R+ is the financial inclusion factor to motivate
the MFI toward approving more applications5. In our study,
we set r = 0.35 (Kneiding and Rosenberg 2008). The rise
time in our simulation is defined as the number of time steps
to achieve (1± 0.01)R(Ŝ,M,A,B). The simulations were
performed on a computer with an Intel Core i7-10875H pro-
cessor with 32 GB of Random Access Memory (RAM). The
comparison can be seen in Figure 2.

5MFIs often receive subsidies from international development
agencies and governments to help offset high risks of lending with-
out collateral.



Robustness against missing data. Figure 2a shows the
performance degradation of the proposed and existing al-
gorithms to a varying level of missing feature information.
The detailed settings are described in Appendix E. While
the performance of all algorithms decreased with the ratio
of missing entries, the proposed algorithm degraded more
gracefully than others. This is because, unlike the other al-
gorithms, the proposed algorithm is designed to differentiate
the empty entry so that the missing information does not
contribute to the decision policy (see Section 2), resulting
in an approach that is robust against missing information.
Moreover, the frequency of missing information makes the
purely data-driven methods (e.g., logistic regression, decision
tree, random forest) difficult to be applied.

Adaptation to changes. We studied the adaptability of the
proposed algorithm to the dynamics in the social and eco-
nomic conditions by changing the distribution of the dataset
in the middle of the simulation. Figure 2b shows the per-
formance of the tested algorithms when the application dis-
tribution changes at the 150th lending period, without the
knowledge of if and when the distribution has changed (see
Appendix D for the detailed settings). As can be seen, the pro-
posed algorithm recovered faster than the other algorithms
as it uses immediate feedback from the latest samples to
perform quick adaptation. In contrast, the other algorithms,
which are primarily designed for offline use, end up using the
data that contains the samples from both before and after the
changes.

Ability to deal with diverse microfinance distributions.
We examined the performance of the compared algorithms
using the dataset from 30 different random distributions as
well as the distributions inspired from the dataset in kiva.org
(see Appendix D). Figures 2c and 2f capture the statistic
of the normalized steady-state utilities and the rising time
of the algorithms, respectively, where the data were taken
from the random distributions and there was 10% missing
information. Figures 2d and 2g capture the statistic of the
normalized steady-state utilities and the rising time of the
algorithms, respectively, where the data were taken from the
distributions inspired by the dataset from kiva.org with both
0 and 20% missing information. On average, the proposed
algorithm converged to a higher utility than the other algo-
rithms, suggesting that the proposed algorithm can learn a
more optimal policy even when there is incomplete informa-
tion, achieving our first design goal. The proposed algorithm
also has a competitive learning speed compared to the other
algorithms, achieving our second design goal.

Group dynamics. The group lending setting can be seen
in Appendix D. The algorithms take group size as part of
the features together with other personal information. The
results of group utility and rising time are shown in Fig-
ures 2e and 2h. The statistical summary of the final average
normalized utilities from the 18 different distributions listed
in Table 2 with advanced group lending adaptation, obtained
by each algorithm, can be seen in Figure 2e, with their rise
time are showed in Figure 2h. Here, we can see that our
proposed method provided higher converged utilities with
lower rise time at most of the considered distributions. From
the statistical summary, on average, our proposed approach

converged to the optimal utilities faster with relatively small
uncertainty. This result shows that the proposed approach can
better seize and learn the influence caused by different group
sizes.

Ensuring fairness among different groups Figure 2j
shows the box plot for the acceptance rate for the minority
group over the course of the simulation. For type 2 fairness,
we can see that by setting the target ratio Π(ξ) = 0.4, the
mean of the acceptance rate is above 0.4. For type 3 fairness,
the gap in acceptance rate for both groups stayed relatively
small throughout. Figure 2j shows the impact on average
utility as we change the target acceptance ratio. We can see
that enforcing a 50% acceptance rate only cost us less than
10% loss on average utility.

Improved tradeoffs between default risk vs. financial
inclusion. There is a tradeoff between default risk vs. fi-
nancial inclusion because a higher approval rate comes at
the expense of higher default risks. Figure 2k shows such
tradeoffs for the algorithms tested. The detailed settings are
described in Appendix E. The proposed algorithm allows us
to systematically tradeoff default risk and financial inclusion
through varying the loan subsidy level e. The perceptron, ran-
dom forest, SVM, and logistic regression algorithms do not
have the flexibility to do so because they cannot be optimized
for a utility function. The credit score based method is not
visible in the current plot range due to large performance
degradation in the presence of missing data. The proposed
algorithm achieved a reduced default rate for an identical
approval rate. The risk-inclusion tradeoffs (solid lines) can be
further improved by exploiting group association and liability
(dotted lines). This is achieved by having competitive/better
steady-state utility and learning speed that are scalable to
high dimensional feature space and robust to missing data
(Figures 2c and 2f).

Summary. The empirical experiments suggest the pro-
posed algorithm has competitive performance in terms of
robustness against missing data, speed of adaptation, and
ability to deal with diverse application distributions, thereby
achieving improved tradeoffs between default risk vs finan-
cial inclusion. The experiment also shows that the proposed
algorithm can deal with group dynamics and eliminate fair-
ness issues.

6 Conclusion
In this work, we presented a novel control-theoretic model for
microfinance lending strategy. The model solves three main
challenges in microfinance: (a) the insufficient past data prob-
lem, (b) the missing applicants’ information problem, and
(c) the group liability structure. Extensive empirical results
from numerous synthetic datasets showed several notable
performances upon benchmark models, such as robustness
against missing data, adaption to changes, group lending
scenario, convergence speed, fairness tradeoff, and default
risk vs. financial inclusion tradeoff. In addition, we proposed
several penalty methods for different fairness scenarios to
avoid introducing discrimination to the decisions. We hope
our model will be useful for achieving the United Nation’s
Sustainable Development Goals and could help more people
in the under-developed regions have a better life.



(a) robustness against missing data (b) adaptation to changes

(c) individual lending (d) data from kiva.org (e) group lending

(f) individual lending (g) data from kiva.org (h) group lending

(i) fairness (j) fairness tradeoff (k) default risk vs financial inclusion

Figure 2: (a) Average converged cumulative normalized utilities of 50 simulations are shown for varying rates of missing data.
The utility values are normalized by the maximum utility when the exact return/default probability is known. (b) The average
utility when the distribution changes at the 150th lending period. The statistics of the steady state utility for (c) diverse individual
applicant distributions, (d) dataset from kiva.org, and (e) group lending case. The statistics of the rise time (learning speed) for
(f) diverse applicant distributions, (g) dataset from kiva.org, and (h) group lending case. (i) Acceptance ratio statistics of the
discriminative features to show fairness types 2 and 3. (j) The tradeoff resulted from the fairness. (k) Tradeoffs between default
probability (risk) vs approval rate (financial inclusion). In subfigures (c) to (i) the mean values are shown by ’×’, and the first,
second, and third quartiles, as well as the maximum and minimum values, are shown as the boxplot. Except for subfigure (a) and
the result from the kiva.org dataset, the results were generated for 10% of missing information. Except for (k), we set e = 0.



A Related Work
Tools developed for regular finance. The most standard approach to decide regular finance is based on credit scores, which
inform the likelihood of each application to default (Klaff 2004; Puro et al. 2010). Other approaches consider the loan approval
process as a binary classification problem to be solved using machine learning methods such as discriminant analysis (Baesens
et al. 2003), logistic regression (Ala’raj and Abbod 2016; Vaidya 2017), and neural networks (Abdou, Pointon, and El-Masry
2008; Chen, Zhang, and Ng 2018; Condori-Alejo, Aceituno-Rojo, and Alzamora 2021). Multi-layers perceptron neural networks
are widely used in automatic credit scoring systems with high accuracy and efficiency (Zhao et al. 2015; Correa, Gonzalez, and
Ladino 2011). To achieve a higher prediction accuracy, some studies utilize the random forest approach with feature selection
and grid search to reduce the influence of irrelevant and redundant features (Wang et al. 2012; Van Sang, Nam, and Nhan
2016). Other studies adopt the SVM (support vector machine) algorithm to also improve the prediction accuracy with fewer
features (Huang, Chen, and Wang 2007; Chen and Li 2010). In a different direction, some studies predict the default probability
of the applicants utilizing logistic regression and its extensions (Bolton et al. 2010; Sohn, Kim, and Yoon 2016). In addition,
works such as (Ampountolas et al. 2021) examine and compare various machine learning algorithms to classify borrowers into
various credit categories. However, as mentioned, these approaches mostly focused on offline learning, assuming that accurate
homogeneous data is abundantly available. These assumptions may not hold in many under-explored (developing) regions, such
as rural Africa, where most of the clients’ data is missing. Furthermore, collecting such information might be expensive and the
data might be unreliable because of the lack of proper state mechanisms.

Fairness in machine learning. Moreover, machine learning approaches may also introduce fairness issues as it is known to
be a controversial topic in the field. Especially for the black-box decision-making tool as it will introduce several explicit and
implicit biases to the results (D’Amour et al. 2020; Corbett-Davies and Goel 2018; Agarwal 2021; Bantilan 2018; Burrell 2016).
A few recent works suggested that the decisions made by these black-box processes may have hidden biases and discrimination
against under-served populations (Hall et al. 2021; Chen et al. 2019). Existing approaches to deal with these biases include
modification in the data generation process to ensure the data sets have sufficient diversity (Barbierato et al. 2022), as well as
pre-, mid-, and post-processing. For example, (Zemel et al. 2013) introduced a pre-processing approach called LFR (Learned
Fair Representations), a discriminative clustering model in which the initial data point is mapped to the distribution in a new
input space to conceal any information regarding the data point being a member of a protected subgroup, preserving individual
fairness. In another example, (Lee et al. 2014) proposed the Fairness-Aware BPRMF method as a mid-prepossessing approach by
pairing the Bayesian Personalized Ranking Model (BPR) with a combination of matrix factorization (MF). (Kim, Ghorbani,
and Zou 2019) proposed a post-processing algorithm, MULTIACCURACY-BOOST, that contains an auditor algorithm that
iteratively makes mistakes on every sub-population in the black box’s classified data until the multi-accuracy constraints of
equality are satisfied.

Optimization methods. To find the optimal decision policies, the learning algorithms employ existing optimization techniques
in stochastic gradient descent (SGD) (Robbins and Monro 1951), reinforcement learning, and optimal control. For instance,
bandit algorithms such as AdaGrad (Duchi, Hazan, and Singer 2011), AdaDelta (Zeiler 2012), RMSProp (Mukkamala and Hein
2017), and Adam (Kingma and Ba 2014) are commonly employed. While there is no guarantee for the first-order methods to
converge to the optimal solution in general, they will converge to the global optimum solution when the objective function is
convex or strongly convex (Zinkevich 2003; Hazan, Agarwal, and Kale 2007).

Handling missing data The learning frameworks need to also handle the missing data problem separately. As missing
data is a common real-world problem, there is a rich line of literature dealing with it. The classical methods such as mean
imputation (Little and Rubin 2002), expectation maximization (Dempster, Laird, and Rubin 1977; Ghahramani and Jordan 1993;
Honaker, King, and Blackwell 2011), least squares (Van Buuren and Groothuis-Oudshoorn 2011; Bø, Dysvik, and Jonassen
2004), K-nearest neighbors (Troyanskaya et al. 2001), and regression tree (Burgette and Reiter 2010), are commonly employed.
Recently, an optimization-based approach (Bertsimas, Pawlowski, and Zhuo 2017) has also been considered.

Empirical investigation into microfinance. Extensive efforts have also been devoted to understanding the economics of
microfinance and its sustainability (Armendáriz and Morduch 2010; CERISE 2019; Ayayi and Sene 2010; Cull, Demirgüç-Kunt,
and Morduch 2018; Van Rooyen, Stewart, and De Wet 2012; Duvendack et al. 2011). The loan default probability has been
determined as one key challenge for microfinance’s sustainability. Thus, numerous studies have been carried out to identify the
contributing factors to microfinance default behaviors (Kamanza 2014; Muthoni 2016; Asongo and Idama 2014; Boadi et al.
2016; Dorfleitner and Oswald 2016). Some features, such as the borrower’s gender, education level, family size, residential
distance to the institution, lending method, activities financed by the loan, total loan received, and loan monitoring method,
among others, have been observed to affect the repayment performance significantly (Field and Pande 2008; Mpogole et al. 2012;
Jote 2018; Nawai and Shariff 2010).

Group lending in microfinance. The studies have also identified that group lending is an essential cornerstone of microfinance.
Here, loans are made to small groups or cooperatives that made the members share the liability jointly (Schurmann and Johnston
2009; Besley and Coate 1995; Ghatak 1999). This joint-liability model uses social, rather than material, collateral, leveraging
peer pressure and community information to overcome asymmetric information in microfinance, leading to better repayment
behavior (Mahmud 2020). In this model, when one group member defaults, other members jointly bear the cost. Since members
of the group are supposed to know each other, this liability structure will help to overcome the information asymmetrical,
inherent in lending to poor borrowers, making group-based lending efficient and effective with low transaction costs for the



provider (Armendáriz de Aghion and Morduch 2000; Postelnicu, Hermes, and Szafarz 2014). A study carried out in Pakistan
concluded that with group lending, borrowers are about 60% times as likely to miss a payment in any given month under
joint liability relative to individual liability (Mahmud 2020). In Africa, there has been also an increasing interest to gear group
lending toward traditional group savings structures such as ”tontines” in Senegal, ”esusu” in Nigeria, ”ekub” in Sudan, Eritrea,
and Cameroon, or ”jangi” in Cameroon (Johnson1, Depesquidoux, and Verges 2021). In these Rotating Savings and Credit
Associations (ROSCAs), members meet regularly and pay a predetermined sum of money at each meeting (Kimuyu 1999).
The sum of the payments is then given to a group member (usually the host of the meeting), determined via a lottery in the
previous meeting, to pay out the loan of this member (Owen 2006). Among these ROSCAs, the women’s association, despite
its informal nature, has been one of the most resilient communities where they have survived in many areas where formal
microfinancing communities have failed. Because of that, microfinancing through women’s associations has recently attracted a
lot of interest (Perry 2002; Mayoux 2000; Abdallah Ali, Mughal, and Chhorn 2021).

B Notation
We use capital letters for random variables, e.g., A, and lowercase letters for their specific realization, e.g., a. A square bracket is
used to represent the entries of a vector, e.g., s = [s[1], s[2], · · · , s[n]]⊺, and a regular bracket is used for the input of an function,
e.g., f(x). We use P(E) to denote the probability of an event E or the density function of a random variable E. Lastly, we use Z,
Z+, R, R+ to denote the sets of integers, non-negative integers, real numbers, and non-negative real numbers.

C Proofs
Proof of Proposition 4.5

For the decomposable case, we have

V (z) = E
[
R(Ŝ,M,A,B)

]
(35)

= E

[ ∑
a=0,1

E[R(Ŝ,M,A,B) | A = a]πz(Ŝ,M, a)

]
(36)

= E
[
E[R(Ŝ,M,A,B) | A = 1]πz(Ŝ,M, 1)

]
(37)

= E
[
E[R(Ŝ,M,A,B) | A = 1]L(q)

]
, (38)

where (37) is because E[R(Ŝ,M,A,B) | A = 0] = 0. Since E[R(Ŝ,M,A,B | A = 1] is independent from z, we can see from
(38) that V (z) is a linear combination of L(q) and from (17), q is a linear function of z. Therefore, if q is a concave function of
z, then L(q) and V (z) are concave functions of z.

In the non-decomposable case, we have

V (z) = E
[
R(Ŝ,M,A,B)

]
(39)

= E

[ ∑
a=0,1

E[R(Ŝ,M,A,B) | A = a]πz(Ŝ,M, a)

]
(40)

= E
[
E[R(Ŝ,M,A,B) | A = 1]πz(Ŝ,M, 1) + E[R(Ŝ,M,A,B) | A = 0](1− πz(Ŝ,M, 1))

]
(41)

= E
[(

E[R(Ŝ,M,A,B) | A = 1]− E[R(Ŝ,M,A,B) | A = 0]
)
L(q) + E[R(Ŝ,M,A,B) | A = 0]

]
. (42)

Since E[R(Ŝ,M,A,B) | A = 0] and E[R(Ŝ,M,A,B) | A = 1] are independent from z, we can see that V (z) is a linear
combination of L(q). Therefore, V (z) is concave with respect to z when L(q) is concave.

Proof of Lemma 4.3. Let N = {1, 2, . . . , N} be the index of the applications in one lending period. Then, let ŝ =
{ŝ1, ŝ2, . . . , ŝN}, m = {m1,m2, . . . ,mN}, a = {a1, a2, . . . , aN}, and b = {b1, b2, . . . , bN} be the vectors containing
the accessible information, group size, lending decision, and outcomes of all applicants, respectively. For all k ∈ {1, . . . , 2N},
we have

E
[
Fz[k] | z

]
= E

[ (
R(̂s,m,a,b)− R̄

) N∑
i−1

1

πz(ŝi,mi, ai)

∂πz(ŝi,mi, ai)

∂z[k]
| z

]
(43)



= E

(R(̂s,m,a,b)− R̄
)

∂

∂z[k]
πz

(
Ŝ,M,A

)
πz

(
Ŝ,M,A

)

 (44)

= E

[∑
a

(πz

(
Ŝ,m, a

)
πz

(
Ŝ,m, a

)
E

[
R(̂s,m,a,b)− R̄ | A,M, Ŝ

]( ∂

∂z[k]
πz

(
Ŝ,M,A

)))]
(45)

= E

[
E

[∑
a

(
R(̂s,m,a,b)− R̄

) ∂

∂z[k]
πz

(
A,M, Ŝ

)
| A,M, Ŝ

]]
(46)

=
∂

∂z[k]
E

[
E
[∑

a

(
R(̂s,m,a,b)− R̄

)
πz

(
A,M, Ŝ

)
| A,M, Ŝ

]]
(47)

=
∂

∂z[k]
E [R(̂s,m,a,b)] (48)

=
∂V (z)

∂z[k]
. (49)

Equality (45) is by law of total probability, (46) is because of the fact that R̄ is independent of z while
∑

A∈{0,1}
∂

∂z[k]πz(Ŝ, A) =

0, and (47) is by linearity of expectation. Here, the expectations in (44) and (48) are taken over P(S, Ŝ, A,B). The first
expectations in (45), (46), and (47) are taken over P(S, Ŝ) while the second expectations are taken over P(B | A, Ŝ).

Proof of Lemma 4.4. Using the same notation as in the Proof of Lemma 4.3, we have,

E [Fz[k] | z] = E

[(
R(̂s,m,a,b)− R̄

) N∑
i=1

1

πz(si,mi, ai)

∂πz(si,mi, ai)

∂z[k]

]
(50)

= E

[∑
a

E
[
R(̂s,m,a,b)− R̄ | ŝ,m,a,b

] N∑
i=1

πz(si,mi, ai)

πz(si,mi, ai)

∂πz(si,mi, ai)

∂z[k]

]
(51)

= E

[∑
a

E
[
R(̂s,m,a,b)− R̄ | ŝ,m,a,b

] N∑
i=1

∂πz(si,mi, ai)

∂z[k]

]
(52)

= E

[∑
a

E
[
R(̂s,m,a,b) | ŝ,m,a,b

] N∑
i=1

∂πz(si,mi, ai)

∂z[k]

]
(53)

=
∂

∂z[k]
E

[∑
a

E
[
R(̂s,m,a,b) | ŝ,m,a,b

] N∑
i=1

πz(si,mi, ai)

]
(54)

=
∂

∂z[k]
E
[
R(̂s,m,a,b)

]
(55)

=
∂V (z)

∂z[k]
. (56)

Here, (50) is the expectation taken over ŝ,m,a, and b; the first expectation in (51) is taken over ŝ and m while the second
expectation is taken over b; (55) holds because

∑
ai∈{0,1} πz(si,mi, ai) = 1; (56) is due to the definition of V (z).

Gradient inequality lemma. To bound the regret of a telescoping sum, we present the following:

Lemma C.1. The following condition holds:

E
[
2∇zV (zt) · (zt − z∗) | zt

]
≤

1

αt

(
E
[
∥zt − z∗∥2 − ∥zt+1 − z∗∥2 | zt

])
+ αtG

2, (57)

where V is defined in Section 2.



Proof. Let us consider E
[
∥zt+1 − z∗∥2 | zt

]
, where

E
[
∥zt+1 − z∗∥2 | zt

]
= E

[
∥ proj

Z
(zt + αtFzt)− z∗∥2 | zt

]
(58)

≤ E
[
∥zt + αtFzt − z∗∥2 | zt

]
(59)

≤ E
[
∥zt − z∗∥2 + α2

t ∥Fzt∥2 − 2αtFzt · (z∗ − zt) | zt
]

(60)

= E
[
∥zt − z∗∥2 + α2

t ∥Fzt∥2 | zt
]
− E

[
2αtFzt · (z∗ − zt) | zt

]
(61)

= ∥zt − z∗∥2 + α2
tE
[
∥Fzt∥2 | zt

]
− 2αtE

[
Fzt · (z∗ − zt) | zt

]
(62)

= ∥zt − z∗∥2 + α2
tE
[
∥Fzt∥2 | zt

]
− 2αt∇ztV (zt) · (z∗ − zt), (63)

therefore,

2∇ztV (zt) · (z∗ − zt) ≤
− E

[
∥zt+1 − z∗∥2 | zt

]
+ ∥zt − z∗∥2

αt
+

α2
tE
[
∥Fzt∥2 | zt

]
αt

(64)

≤
− E

[
∥zt+1 − z∗∥2 | zt

]
+ ∥zt − z∗∥2

αt
+ αtG

2, (65)

thus,

E
[
2∇ztV (zt) · (z∗ − zt) | zt

]
≤

− E
[
∥zt+1 − z∗∥2 | zt

]
+ ∥zt − z∗∥2

αt
+ αtG

2. (66)

Here, (63) is due to Lemma 4.3 and (65) is due to the assumption E
[
∥Fzt∥2 | zt

]
≤ G2. Thus, we can then recover (57).

Proof of Theorem 4.1. Given Lemmas C.1 and 4.3, we can proof Theorem 4.1:

E

[
2

T∑
t=1

(
V (z∗)− V (zt)

)]
≤ E

[
2

T∑
t=1

(
∇zV (zt) · (z∗ − zt)

)]
(67)

≤ E

[
2

T∑
t=1

E

[
∇zV (zt) · (z∗ − zt) | zt

]]
(68)

≤ E

[
T∑

t=1

E
[
∥zt+1 − z∗∥2 + ∥zt − z∗∥2 | zt

]
αt

+G2
T∑

t=1

αt

]
(69)

≤
T∑

t=1

E
[
∥zt − z∗∥2

]( 1

αt
−

1

αt−1

)
+G2

T∑
t=1

αt (70)

≤ D2
T∑

t=1

(
1

αt
−

1

αt−1

)
+G2

T∑
t=1

αt (71)

≤
1

αT
D2 +G2C(T ). (72)

Here, (67) is due to the concavity of V (zt); (68) is due to the law of total expectation; (69) is due to Lemma C.1; (70) is due to
the law of total expectation; (71) is due to assumption (28); and (72) is due to assumption (30).

Proof of Corollary 4.2. We have

E

[
T∑

t=1

(V (z∗)− V (zt))

]
≤

1

2

(
D2

T∑
t=1

(
1

αt
−

1

αt−1

)
+G2

T∑
t=1

αt

)
(73)

≤
1

2

(
D2G

√
T

D
+G2D

G
2
√
T

)
(74)



=
1

2

(
DG

√
T + 2GD

√
T
)

(75)

=
3

2
DG

√
T , (76)

where (73) is due to (71); (74) is due to
∑T

t=1

1
√
t
≤ 2

√
T . We recover (32) by dividing (76) by T .

D Experiment and Simulation Setting
Generating Application Data Pools
To test our algorithm, we generated numerous synthetic and artificial data pools where each data pool contains 106 data samples.

Realistic synthetic dataset from Kiva dataset. We augmented a real microfinance loan dataset based on applicants’ features
and information from the Kiva platform (Hartley 2010)6. The Kiva dataset contains the features and returns/default information of
N = 3, 181 approved loan applications in 2011. There are 41 features in the raw Kiva dataset, and we categorized the application
features into several categories shown in Table 1. In our study, we only considered the features with the ”used” label. After
filtering, there are 15 features that we used in our study. We used the ”posted date” and ”funded date” information to obtain the
duration until the loan is funded from the date when the application is posted on the platform. After filtering the features, we first
converted all the descriptive features (e.g., country name, activity sector for requested loan) to numerical values based on the
defaulted rate of applications. To ease the optimization process, we map the numerical values with a maximum possible value
above 4 to the [0, 4] range, utilizing the following process,

sscaled[k] =
4 · skiva[k]

max(skiva[k])
. (77)

Here, max(s[k]) refers to the maximum value of the k feature. We then generated synthetic data from the Kiva dataset using the
following two different methods.

First, we augmented the pre-processed data by fitting it into the following parametric model,

Pρ,ν(B | Ŝ) = 1

1 + e−x
, (78)

(79)

where x ∈ R is a scalar value computed as

x =
∑
k

ρ[k]Ŝ[k] + ν[k]. (80)

Here, {ρ, ν} ∈ {Rn,Rn} are the parameters that govern the shape of the model. We generated the synthetics realistic dataset
consisting of 106 data samples by assigning random feature values drawn from the pre-processed dataset. Then, we drew each
application outcome independently from the parametric model, i.e.,

bi,t
i.i.d.∼ Pρ∗,ν∗(B | Ŝ). (81)

Here, we considered a default probability to be around 25%, the default rate of microfinance observed in Africa (Pollio and
Obuobie 2010).

Second, we augmented the pre-processed data utilizing a bootstrapping method. Here, we first differentiate the data into two
categories, defaulted and paid. We then generated pools of datasets consisting of 106 applications each with 10%, 20%, 30%,
40%, and 50% default rates by randomly drawing applications from the pre-processed data. To achieve the desired default rates,
we drew the defaulted and paid data separately. This method keeps the distributions of the original Kiva dataset, but cannot
produce new samples that are not contained in the original dataset. In contrast, the previous method uses the original distribution
of the features but can create new samples by randomly sampling B using the learned return probability from the original dataset.
We use data generated from both methods to understand how the algorithm behaves in different scenarios.

Artificial distributions for individual applications. We generated artificial data pools for individual applications based on 30
different distribution types. We considered the feature vector S of 100-features information from each loan application. Each
feature contains a non-negative number that represents the applicant’s information. Those features could go from personal
information, including age range, income level, education level, language skill, etc., to household information such as household
type, number of bedrooms, internet accessibility, etc. For distribution types 1 through 26, we bounded the values of the feature

6The original kiva dataset can be accessed from https://stat.duke.edu/datasets/kiva-loans



Feature Number Feature Name Feature Description Data Preprocessing Decision

1 id loan ID unique for each applicant
2 description.languages language of loan description used
3 funded amount amount of loan has been collected by lenders not available in the beginning
4 paid amount amount of the loan which has been paid off not available in the beginning
5 activity activity for requested loan used
6 Sector sector for requested loan used
7 location.country code country code used
8 location.country country name used
9 location.town town name used
10 location.geo.level latitude and longitude indicator for country or town used
11 partner id partner ID irrelevant
12 borrowers.first name first name of borrower unique for each applicant
13 borrowers.last name last name of borrower unique for each applicant
14 borrowers.gender gender of borrower used
15 borrowers.pictured borrowers’ picture availability irrelevant
16 terms.disbursal amount distributed amount in the local currency conflict with our assumption
17 terms.disbursal currency distributed currency used
18 terms.disbursal date distributed date conflict with our assumption
19 paid date Fully paid date not available in the beginning
20 defaulted date defaulted date not available in the beginning
21 terms.loan amount the amount of money distributed conflict with our assumption
22 terms.loss liability.nonpayment who is liable for non repayment used
23 terms.loss liability.currency exchange who is liable for currency exchange loss used
24 posted date loan posted date on Kiva

to calculate the duration: used
25 funded date fully funded date
26 journal total.entries number of updates by borrower not available in the beginning
27 terms.local payments.due date payment is due date to the field partner conflict with our assumption
28 terms.local payments.amount amount due to the field partner conflict with our assumption
29 terms.scheduled payments.due date scheduled payment due date conflict with our assumption
30 terms.scheduled payments.amount scheduled payment due amount conflict with our assumption
31 delinquent whether has become delinquent not available in the beginning
32 video.youtube id youtube id if provide a video irrelevant
33 basket amount amount of loan saved but not confirmed irrelevant
34 amount payment amount in US dollars conflict with our assumption
35 payment id payment ID irrelevant
36 local amount payment amount in local currency conflict with our assumption
37 processed date processed date irrelevant
38 rounded local amount rounded local payment amount conflict with our assumption
39 settlement date payment settlement date conflict with our assumption
40 lat latitude of loan location used
41 lon longitude of loan location used
42 status paid or defaulted status label

Table 1: Description of the features and data pre-processing decision of the Kiva dataset.



information in the range of [0, 4], while distribution types 27 through 30 have unbounded values of feature information. The
feature information for distribution types 1 through 18 were generated based on

P (S)l = aS +
2− 2aSbS

bS(bS − 1)
(binl − 1) , (82)

which is parameterized by constants aS and bS . Here, binl is the l-th bin of the feature domain, and P(S)l is the feature
distribution in the l-th bin. In our simulation we used aS = {0, 0.005, 0.01} and bS = 100. Specific distribution functions to
generate feature information for distribution types 19 through 30 can be seen in Tables 3 and 4. We defined the return probability
of individual lending, P(B | Ŝ,M = 1), based on P(Ŝ | S) = 1, where we considered three forms of P(B | Ŝ,M):

P
(
B = 1 | Ŝ,M

)
= cB1(qB) + cB2, (83)

P
(
B = 1 | Ŝ,M

)
= cB1(qB)

2 + cB2(qB) + cB3, (84)

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)
. (85)

Detailed values for constants cB1, cB2, and cB3 as well as the specific form of parameter qB can be seen in Tables 2 to 4.

Artificial distributions with group applications and liability. We considered two cases of group lending strategy: the basic
case with empty heterogeneous information π(S = ∅,M,A) and the advanced case π(S ̸= ∅,M,A). For the basic case, the
data pool only contains group size information. Each application i comes with group size m. In the empirical study, we assume
that the group size is uniformly distributed among G = {1, 2, · · · , 100},

P(M = m) =

{
1/|G| if m ∈ G
0 otherwise.

(86)

The liability for the loan repayment is imposed on the group by obligating the members of the group to cover the other members
who cannot return the loan and its interest, 1 + r. At the end of the lending period, each applicant j in the group i holds θi,j unit
of money, which is the principal plus gains or loss. We assume that θi,j is an i.i.d. Gaussian random variable, i.e.,

θi,j
i.i.d.∼ N (µ(ŝi), σ

2). (87)

where N (µ, σ2) refers to a Gaussian distribution with mean µ and standard deviation σ. Thus, at the end of the lending period,
the group i holds

∑mi

j=1 max{θi,j , 0} units of money in total. Here, we assumed that the members with θi,j < 0, who hold debts
from elsewhere, do not have the capability to return any money but will not transfer the other debts to the group. Because group i
must return mi · (1 + r), the group will default if

mi∑
j=1

max(θi,j , 0) < mi · (1 + r). (88)

Accordingly, the return probability for group application with mi members is given by

P(B = 1 | Ŝ = ŝi,M = mi) = P

mi∑
j=1

max(θi,j , 0) ≥ mi · (1 + r)

 . (89)

For basic case data pool, we choose µ = 1.42 and σ = 0.5. For advanced case data pool, we considered the repayment
probability types 1 to 18 in Table 2, where we modeled µ(ŝ) = ∆ + P(B = 1 | Ŝ = ŝ,M = m) and σ = 0.5 given
∆ = 0.5 + r for r = 0.35, that helped to center µ around a reasonable repaid amount.

Simulation Setting
We performed simulations for lending periods of t = 1 to t = 500. At each lending period, we choose Nt = 10 applicants, taken
from the pool of applicants generated using methods described in Appendix D. Here, we have the observable information ŝi,t.

Algorithms to compare. We compared our proposed algorithm against the following existing algorithms:

• Perfect Repayment Information. The best scenario to decide on loan approval is when perfect knowledge of repayment
probability is available. Here, for the perfect decision making, (34) can be rewritten as

R(Ŝ,M,A,B) =


(r + e) ·m; P(B = 1 | A = 1, S,M = m),

(−1 + e) ·m; P(B = 0 | A = 1, S,M = m),

0; A = 0, B = 0,

(90)
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(
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)
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distribution,

P (S)

qB =
1

n

∑n
j=1 s[j]

P
(
B = 1 | Ŝ,M

)
=

1

4
qB

qB =
1

n

∑n
j=1 s[j]

P
(
B = 1 | Ŝ,M

)
= −

1

16
q2B +

1

2
qB

qB =
1

n

∑n
j=1 2s[j]− 4

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)

qB =
1

n

∑n
j=1 2.5s[j]− 4

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)

qB =
1

n

∑n
j=1 3s[j]− 4

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)

{W [1], ...,W [n]} ∼ N (2, 42)

qB =
1

n

∑n
j=1 W [j]s[j]− 4

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)

Table 2: List of the repayment probability distributions considered in our study.
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−
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4950
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1

99
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binl

9900

qB =
1

n

∑n
j=1 −s[j]

P
(
B = 1 | Ŝ,M

)
=

1

4
qB + 1

qB =
1

n

∑n
j=1 −2s[j]

P
(
B = 1 | Ŝ,M

)
= −

1

128
q2B +

1

16
qB + 1

qB =
1

n

∑n
j=1 −3s[j] + 7

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)

{W [1], ...,W [n]} ∼ N (−3, 42)

qB =
1

n

∑n
j=1 W [j]s[j] + 7

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)

Table 3: List of the repayment probability distributions considered in our study with more negative weights for the features.
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(
B = 1 | Ŝ,M

)

S ∼ N
(
2, 0.252

)

W [j] =
5

99
(j − 1)

qB =
1

n

∑n
j=1 W [j]s[j]− 4

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)

S ∼ N
(
6, 12

)

W [j] =


1.5−

7

495
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n

2

0.1 +
7

495

(
j −

n

2
− 1

)
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n

2

qB =
1

n

∑n
j=1 W [j]s[j]− 4

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)

S ∼
∣∣N (

0, 12
)∣∣

W [j] = 20−
25

99
(j − 1)

qB =
1

n

∑n
j=1 W [j]s[j]− 4

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)

S ∼ exp
(
N
(
0, 0.252

))

W [j] =
10

99
(j − 1)

qB =
1

n

∑n
j=1 W [j]s[j]− 4

P
(
B = 1 | Ŝ,M

)
=

exp(qB)

1 + exp(qB)

Table 4: List of the repayment probability distributions considered in our study with unbounded features distributions.



for P(B = 0 | A = 1, S,M) = 1− P(B = 1 | A = 1, S,M). The expectation of the utility given the decision to approve a
given application can then be expressed as

E
[
R(ŝi,t,mi,t, ai,t, bi,t) | ai,t = 1

]
= mi,t

(
(r + 1)P(bi,t = 1 | ai,t = 1, si,t,mi,t) + e− 1

)
. (91)

The algorithm will approve an application when
E
[
R(ŝi,t,mi,t, ai,t, bi,t) | ai,t = 1

]
≥ 0 (92)

=⇒ P(bi,t = 1 | ai,t = 1, si,t,mi,t) ≥
1− e

1 + r
. (93)

Thus, in this perfect information scenario, the decision rule can be written as

A =

1 if P(B = 1 | A = 1, S,M) ≥
1− e

1 + r
0 otherwise.

(94)

• Credit Score Based Method. In real life scenario, we cannot access the true value for the repayment probability P(B =
1 | A = 1, S). Here, we will predict its value by finding the best fit model for the data from the previous lending period.
Specifically, we fit the data into the first order Gaussian model,

P̂(B = 1 | A = 1, Ŝ,M) = ag exp

(
−
(
qg − bg

cg

)2
)
, (95)

where

qg =
1

n

∑
j∈U(ŝ)

ŝ[j]. (96)

Here, P̂(B = 1 | A = 1, Ŝ) is the predicted repayment probability parameterized by constants ag, bg, and cg . The constants
ag, bg, and cg are obtained by minimizing the non-linear least square of the difference between the predicted and the actual
repayment probability, i.e.,

{ag, bg, cg} = argmin
{ag,bg,cg}

∑∥∥P̂(B = 1 | A = 1, Ŝ,M)− P(B = 1 | A = 1, S,M)
∥∥
2
. (97)

We can then rewrite the decision rule (94) as

A =

1 if P̂(B = 1 | A = 1, Ŝ,M) ≥
1− e

1 + r
0 otherwise.

(98)

The procedure is executed by employing the fit() (The MathWorks 2019) function in MATLAB. For this approach, we
assume that the true value for the repayment probability is available at the end of every lending period. The MFI approves all
applicant at the first lending period then store the features data and the actual repayment probability at the end of the lending
period to be fitted to the model for the next lending period. Then, at the end each lending period after the first, we revise the
model by adding more data point using the current data. We repeat the process until the tenth lending period as we observed
that there is not significant difference in the performance after the tenth lending period.

• Perceptron. Perceptron (Rosenblatt 1957) is a classic learning algorithm for binary classification (i.e., approve or decline
applications). Specific perceptron algorithm we implemented in our simulation can be seen in Algorithm 2.

• Random Forest. We employ MATLAB built-in function for decision tree classification, fitctree() (The MathWorks
2019), to predict if the applicants will return or default the loan. We let the function to optimize its hyper-parameters
automatically and all other parameters utilize its default values. The decision tree model was trained at every loan period
using the available feature information Ŝ and the boolean return/default data collected from previous lending periods. Here,
at the first lending period, the MFI will approve all applicants then store the data at the end of the lending period to be used as
the training data for the next lending period. Then, at the end of the next lending period, we add the new data into the training
data. To save computational cost from training the model, we perform the training only until the tenth lending period.

• Support Vector Machine. For the support vector machine (SVM) classification, because the high dimensionality of the feature
vector, we employ binary linear classifier available as a MATLAB built-in function, fitclinear() (The MathWorks
2019), with 'svm' as the 'Learner' option. Similarly as before, the hyper-parameters of the function are automatically
optimized and all other parameters are set to use its default values. The model was trained using the same procedure as the
above random forest classification.

• Logistic Regression. Lastly, we compare the performance of our proposed algorithm against the logistic regression method.
We again employ MATLAB built-in function, fitclinear() (The MathWorks 2019), to predict if the applicants will
return or default the loan. Here, the 'logistic' is chosen as the 'Learner' option. All other settings and procedures
are equal to the settings and method used in the above SVM classification.



Algorithm 2: Perceptron

Initialized the perceptron weights Pw and bias Pb

for each loan period t do
for each application i do

Set all empty entry as 0.
Calculate the perceptron activation PA =

∑n
j=1 Pw[j]si[j] + Pb

Generate the decision of application i with: ai,t =
{
1; PA > 0,

0; PA ≤ 0.
Observe outcome bi,t ∈ {0, 1}.
Gain utility R(ŝi,t,mi,t, ai,t, bi,t).
if ai,t ̸= bi,t then

Update Pw = Pw + bi,tsi,t.
Update Pb = Pb + bi,t.

end if
end for

end for

Multi-optimization for improved learning speed We initiated the optimization scheme with 10 initial random points and
kept five of the best result for the next lending period. To explore the landscape, we then chose additional five random points
for the next iteration and performed the optimization iteration for these 10 points. To reduce the computational cost of the
multi-optimization scheme, we only repeated this procedure for the first 50 lending period and then only performed the gradient
optimization for the best result afterward.

Step size, learning speed, and convergence The choice of step size αt is crucial for the convergence and learning speed of the
proposed algorithm. We studied the effect of different choices of αt in our proposed algorithm by varying the constant value of
D
G ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000, 5000, 10000, 50000} from Corollary 4.2. A small step size will converge
to non-optimum results, while a large step size will produce an overshoot and hinder convergence as can be seen in Figure 3.
Corollary 4.2 suggest decreasing the step size with speed O(1/

√
t) which prevents the algorithm to overshoot when the optimum

policy has been found.

Figure 3: Convergence rate comparison of using different step sizes. For this comparison we consider case A as the form of L(q)
with repayment probability distribution type 5 without missing information. We run the simulation 50 times and the shaded
regions show the area within one standard deviation of the average cumulative utilities. For this particular case, the optimal step
size is achieved when αt =

10√
t
.

E Performance
Performance Comparison
The performance comparison of the proposed algorithm against other approaches described previously, with e = 0 and repayment
probability distribution type 5, can be seen in Figure 4. For this comparison, we chose the case’s optimum step size and performed



(a)

(b) (c)

Figure 4: Comparison of (a) average cumulative utility, (b) approval rate, and (c) default probability of the proposed algorithm
against several common learning algorithms for binary classification without financial inclusion. The simulation was run 50
times where the solid lines are the average values and the shaded areas show the values within one standard deviation.



the simulations 50 times. Figure 4a shows the comparison of the average cumulative reward defined as

V =
1

t

t∑
τ=1

Nτ∑
i=1

R(ŝi,τ ,mi,τ , ai,τ , bi,τ ). (99)

We can see that the proposed algorithm gradually increases its average cumulative utility with every iteration. Here, we can see
that the proposed algorithm outperforms the other algorithms and is able to approach the performance of the perfect repayment
information scenario with a faster convergence rate, at least for this type of repayment probability distribution. The performance
comparison with other repayment probability distributions and the Kiva data set will be discussed further. Figures 4b and 4c show
the approval rate and the default probability of the compared methods, where we can see that the proposed algorithm converges
at a similar approval rate and default probability as the perfect information scenario which shows promising performance of the
proposed algorithm.

Robustness to Missing Data
We simulate missing information by choosing a missing probability pe. Here, the feature information si,t will still have all
information, but the corresponding observe entry in ŝi,t will be empty with probability pe. The repayment probability of each
applicant is calculated without any missing information. We varied the missing probability equal to 0, 10%, 25%, and 50%.

Adaptation to Changes
We inspected the adaptability of the algorithms to a change in the application distribution by introducing different distributions at
lending period 250 where the algorithms do not have prior knowledge of if and when the distribution has changed. To highlight
the behavior of the algorithms in adapting to the changes, we chose the distributions that will have similar repayment probability
distributions but need to have opposite feature weights. Specifically, we chose the following six cases:

1. distribution type 1 changes to distribution type 19,
2. distribution type 2 changes to distribution type 20,

3. distribution type 3 changes to similar distribution but with P
(
B = 1 | Ŝ,M

)
= −

1

4
qB + 1,

4. distribution type 9 changes to similar distribution but with qB =
1

n

∑n
j=1 −s[j] + 4,

5. distribution type 27 changes to the same distribution but with S ∼ −
(
N (2, 0.252)− 2

)
+ 2,

6. distribution type 28 changes to the same distribution but with S ∼ −
(
N (6, 12)− 6

)
+ 6,

The distribution types referred to can be found in Appendix D. We trained the credit score based method, random forest, SVM,
and logistic regression algorithms for 10 lending periods in the beginning but keep storing the data at the end of every lending
period. When the algorithms notice a distribution change, implies by the sudden drop of the utility, the algorithms will start the
training again with the collected data until converge.

Figure 5 shows the statistical summary of the convergence utility and rise time of each algorithm before and after the
distribution changes. As shown, all algorithms are able to recover their convergence utilities after the change. However, as
expected, the algorithms designed for offline use such as the credit score based method, random forest, SVM, and logistic
regression require a longer time to recover after the change. This is because these algorithms, unlike the proposed method and
the perceptron which can use immediate feedback from the latest data, end up using samples that contain both data from before
and after the change to update the model.

Performance Against Different Distributions
We compared the performance of the algorithms against different distributions described in Appendix D. We run the simulation
50 times and take the average of the converged utility values of each distribution type. To fairly compare all different type of
distributions, we normalized the utilities by shifting it up such that the lowest converge utility become zero. Then, we divided
the shifted value of the utilities by the utility of the perfect scenario after shifting and multiply it by two. Finally, we shifted
the values down by one. Here, we considered the individual lending case where there are 10% missing information for all 30
artificial distributions and 20% missing information for the data inspired by the Kiva dataset.

The final average normalized utilities from the 18 different distributions listed in Table 2 obtained by each algorithm can be
seen in Figure 6 with its rise time is shown in Figure 6b. Here, we can see that our proposed method provides higher converged
utilities with lower rise time at most of the considered distributions. The proposed method still maintain consistent performance
against repayment probability distributions with more negative weight of the features such as the distribution types 19 to 26
described in Table 3, as can be seen in Figure 7. From Figure 7 we can also see that in average the proposed algorithm gives
higher final utility with lower rise time than the other compared algorithms for unbounded applicants’ feature distribution
such as distribution types 27 to 30 describe in Table 4. The statistical summary of the result can be seen in Figures 2c and 2f.



(a) (b)

Figure 5: Statistical summary of the (a) convergence utilities and (b) rise time of each algorithm before and after the distribution
changes. The mean values are shown by ’×’, and the first, second, and third quartiles as well as the maximum and minimum
values are shown as the boxplot. The rise time after the change is calculated from the time the change takes place.

From the statistical summary, in average, our proposed approach converged to the optimal utilities faster with relatively small
uncertainty. In addition, considering dataset generated based on the real lending data from Kiva.org, the proposed algorithm
able to give comparable performance against the other algorithms as showed in Figure 8. Moreover, from Figure 8 we can see
that the proposed algorithm results in higher utility and lower rise time than most of the other algorithms when there are 20%
missing information. These results also show the robustness of the proposed approach against different repayment probability
distributions.

Group Dynamics
As mentioned, we considered two cases of group lending strategies as described in Appendix D. For the basic group lending that
takes group size as the only feature, Figure 9a shows the theoretical relationship between expected reward and group size. The
optimal threshold is shown as the cross-over point across 0. From Figure 9a, the optimal threshold is around n = 20. The curve
increases monotonically after it goes to the positive domain, implying that the larger group size gives a greater expected reward.
For the advanced group lending, where the group size is part of the applications’ features, Figure 10 shows the final average
normalized utilities and its rise time from the 18 different distributions listed in Table 2 with advanced group lending adaptation.
Here, we considered 10% missing information and applied the same normalization treatment as described in individual lending
case. From the results we can see that the proposed algorithm also able to provide higher final utility with comparable rise time
compared to the other algorithms.

Fairness Investigation
To investigate the fairness of our algorithm, we introduce a supposedly discriminative feature to the feature vector. This
discriminative feature has three discrete values {0,2,4} and does not affect the actual repayment probability. The algorithm is
then run for some target ratio of the discriminative feature with a value of 0 to investigate the type 2 fairness. To investigate type
3 fairness, we consider the discriminative feature with values 0 and 4.

Effect of Financial Inclusion
Here, we varied the loan subsidy level from 0 to 1 with 0.05 interval. We then record the final approval and default rates of each
value of e. From Figure 11 we can see that the approval and default rates of the proposed algorithm changes as we change the
value of e, suggesting that we can control the approval vs default tradeoff by altering the loan subsidy level. As we can also see
that the perceptron, random forest, SVM, and logistic regression algorithms do not posses the flexibility to optimize the tradeoff
between approval vs default rates.

Computational Cost Comparison
We compared the computational time of the algorithms by varying the number of features information (see Figure 12a). From the
comparison, we can see that the computational time for all algorithm is almost stable for different number of features information.
Figure 12b shows the statistical summary for the computational time of each algorithm with 100 features information. From
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Figure 6: Considering the case with 10% missing information for distributions type 1 to 18 in Table 2. (a) shows bar plot of
the converged utilities from different algorithms normalized by the converged utility from the perfect repayment information
scenario. (b) shows bar plot comparing the rise time of the algorithms.



(a)

(b)

Figure 7: Considering the case with 10% missing information for distributions type 19 to 30 in Tables 3 and 4. (a) shows bar plot
of the converged utilities from different algorithms normalized by the converged utility from the perfect repayment information
scenario. (b) is bar plot comparing the rise time of the algorithms.
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Figure 8: Considering dataset from kiva.org. (a) shows bar plot of the converged utilities from different algorithms normalized by
the converged utility from the perfect repayment information scenario. (b) shows bar plot comparing the convergence time of the
algorithms.
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Figure 9: (a) Theoretical study on optimal group threshold: optimal threshold n is around 20. (b) Empirical result on optimal
group threshold: optimal threshold n is around 20.

Figure 12, we can see that the proposed algorithm is computationally cheaper in order of magnitude compared to all other
algorithms except the perceptron. However, although the perceptron is computationally cheaper than the proposed algorithm, the
proposed algorithm achieves better performance and comparable to the other more computationally expensive algorithm such as
the random forest algorithm.



(a)

(b)

Figure 10: Considering the advance group lending scenario with 10% missing information for distributions type 1 to 18 in
Table 2. (a) shows bar plot of the converged utilities from different algorithms normalized by the converged utility from the
perfect repayment information scenario. (b) shows bar plot comparing the rise time of the algorithms.



(a)

(b)

Figure 11: Plot showing the effect of the constant e in (34) as the subsidy level received by financial institution to (a) the loan
approval rate and (b) default rate.

(a) (b)

Figure 12: (a) shows computational time comparison of different algorithms for increasing number of feature information. (b)
shows computational time comparison for 100 features information. The plots are generated from type 5 distribution. The vertical
axes of both plots are in logarithmic scale.
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