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ABSTRACT
We formulate EV charging as a feasibility problem that meets all

EVs’ energy demands before departure under charging rate con-

straints and total power constraint. We propose an online algorithm,

the smoothed least-laxity-�rst (sLLF) algorithm, that decides on

the current charging rates based on only the information up to

the current time. We characterize the performance of the sLLF

algorithm analytically and numerically. Numerical experiments

with real-world data show that it has signi�cantly higher rate of

generating feasible EV charging than several other common EV

charging algorithms.

KEYWORDS
Online algorithm, online feasibility, resource augmentation, electric

vehicle charging

1 INTRODUCTION
�e electri�cation of transportation provides a great opportunity

for energy e�ciency and sustainability. �ere were over a million

electric vehicles (EVs) worldwide as of 2015 [1], and accelerated

EV proliferation is expected for many years to come. To charge a

large number of EVs however presents a tremendous challenge, in

terms of both its impact on power grid and management complexity.

While the �exibility in charging time and rate can be exploited for

coordinated EV charging to control and mitigate the impact on the

grid, its e�cacy o�en depends on accurate prediction of EV arrivals

and energy demands as well as coordination across time among

di�erent EVs. However, the accurate prediction is usually either

impossible or very costly (in data collection and computation), and

the temporal coordination among a large number of EVs may incur

prohibitively large complexity. In view of these limitations, in

this paper we investigate low-complexity EV charging that does

not require the prediction of EV arrivals/demands or the temporal

coordination.

Speci�cally, we formulate EV charging as a feasibility problem

that meets all EVs’ energy demands before departure under individ-

ual charging rate constraints and total charging power constraint.
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We then propose an online algorithm, the smoothed least-laxity-

�rst (sLLF) algorithm, that decides on the current charging rates

based on only the information up to the current time. �e laxity is

de�ned as an EV’s remaining time at the charging station minus

the time needed to fully charge it at the maximum rate, and can be

seen as the feasibility margin for EV charging. Without informa-

tion on future EV arrivals, the sLLF algorithm makes best possible

decision by maximizing the minimum resulting laxity for the next

time among the EVs currently in the system.

As the sLLF algorithm does not take future EV arrivals into con-

sideration, an (o�ine) feasible EV charging instance may be (online)

infeasible under sLLF. We use the resource augmentation frame-

work to study the sLLF algorithm, and characterize the minimum

amount of additional resources (total power supply and charging

rates) that will allow the algorithm to generate a feasible charging

for any o�ine feasible charging instances. We further carry out nu-

merical experiments using real-world data, and show that sLLF has

signi�cantly higher rate of generating feasible EV charging than

several other common EV charging algorithms. �is is expected, as

the sLLF algorithm tries to leave the largest feasibility margin, so it

can best accommodate arbitrary future EV arrivals.

Related Works
�e existing EV charging algorithms can be categorized into either

o�ine or online. �e o�ine algorithms require complete informa-

tion on all EVs to decide on the charging rates [4, 8, 16, 18, 23, 24].

However, information on future EV arrivals may not be avail-

able or very costly to obtain, which motivates online algorithms

[2, 3, 5, 9, 13, 19, 22, 23, 23, 26, 26]. �e performance of the online

algorithm is generally analyzed for the worst-case [5, 13] or average-

case [9, 26]. Other desirable properties of charging algorithms are

low complexity in computation and memory usage, which can be

achieved by sorting or bisection based methods, such as earliest-

deadline-�rst, least-laxity-�rst [21], Whi�le’s index policy [25, 26],

among others.

�e multi-processor deadline scheduling problem [6, 7, 15] con-

siders the scheduling of jobs on multiple processors. We can view

the EV charging problem as a deadline scheduling problem by

considering chargers as processors, and EVs with certain energy

demand as jobs. Resource augmentation is a prominent analysis

framework [10–12, 17] for analyzing the performance of online

algorithms for multi-processor scheduling, we apply this frame-

work to the EV charging problem. �e main di�erence is that in

our se�ing the power limit is time-varying, the maximum rates are

heterogeneous, and the power limit may not necessarily be integer

multiplication of the maximum rate.
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Table 1: Notation

I EV charging problem instance

V set of EVs

Vt set of EVs remaining in the charging station at time t
T set of times

ei energy demand of EV i ∈ V
ei (t ) remaining energy demand of EV i at time t ∈ T
ri (t ) charging rate of EV i at time t
P (t ) power limit of the charging station at time t
ai arrival time of EV i
di departure time of EV i

2 MODEL AND ALGORITHM
2.1 System Model
Consider a system with one charging station that serves a set of

EVs, indexed by i ∈ V = {1, 2, 3, · · · }. We use a discrete-time

model where time is divided into slots of equal sampling intervals,

indexed by t ∈ T = {0, 1, 2, · · · ,T }. EV i arrives at the charging

station with an energy demand ei at time ai , and departs from the

station at time di .
1

During its stay at the station, the EV is charged

at a rate (or power) of ri (t ) ≥ 0, ai ≤ t < di . For convenience, we

extend this de�nition of ri (t ) to the entire temporal domain. �e

notations are summarized in Table 1.

To account for limitations in the charger or ba�ery of an EV, each

EV i can only be charged up to a peak rate r̄i , i.e.

ri (t ) ≤ r̄i , t ∈ [ai ,di ), i ∈ V

ri (t ) = 0, t < [ai ,di ), i ∈ V
(1)

To account for limitations in the grid or power station, the charging

station has a (possibly time-varying) power limit P (t ) such that
2∑

i ∈V

ri (t ) ≤ P (t ), t ∈ T . (2)

Furthermore, the power limit and maximum charging rates fall

within the following nominal ranges:

Pmin ≤ P (t ) ≤ Pmax,

r̄min ≤ r̄i ≤ r̄max, i ∈ V .

Finally, every EV’s energy demands needs to be satis�ed, i.e.,3∑
t ∈T

ri (t ) = ei , i ∈ V . (3)

Next, we de�ne an EV charging problem instance as a quintuple

I = {ai ,di , ei , r̄i ; P (t )}i ∈V,t ∈T . �e primary goal of EV charging

is to satisfy every EV’s energy demands under the above power

supply and peak rate constraints.

1
Each EV leave at its departure time regardless of its charging conditions. �is assump-

tion is applicable for most slow chargers including ACN [14]. Under this assumption,

we do need to explicitly model number of stations, as the speed of charging does not

a�ect the availability of chargers for incoming EVs.

2
All EVs at the charing station can be simultaneously as long as the constraints (1)-(2)

are satis�ed.

3
�e actual constraint in ACN is

∑
t∈T δ ri (t ) = ei , i ∈ V , where δ (h) is the

sojourn time of sampling time intervals, ei has unit kWh, ri (t ) has unit kW [14].

Since ri (t ) can always be rescaled according to δ , we set δ = 1 without loss of

generality.

De�nition 2.1 (Feasible instance). An EV charging problem in-

stance I is o�ine feasible if there exist charging rates r = {ri (t ) :

i ∈ V, t ∈ T } that satisfy constraints (1)-(3).

Constraints (1)-(3) are a�ne. �erefore, verifying the feasibility of

an EV charging instance is a linear program (LP) for which many

e�cient algorithms exist.

2.2 Online Scheduling
In practice, the energy demand and departure time of an EV are

only informed a�er its arrival.
4

Consequently, the charging station

must use an online algorithm to determine an EV’s current charging

rate ri (t ) using only information up to the current time t :

It = {ai ,di , ei (τ ), r̄i ; P (τ )}i ∈Vt ,τ ≤t , (4)

where ei (τ ) = ei −
∑τ−1

t=0
ri (t ) is the remaining energy demand of

EV i at the beginning of time slot τ .

De�nition 2.2 (Online algorithm). An online algorithm is a se-

quence of functionsA = {At } where each functionAt : It → r (t )
maps the information up to the current time It to the current charg-

ing rates r (t ) = {ri (t )}i ∈Vt .

De�nition 2.3 (Feasibility of the algorithm). An (online) algorithm

A is feasible (online feasible) on instance I if it gives charging rates

that satisfy constraints (1)-(3).
5

2.3 �e Smoothed Least-Laxity-First Algorithm
2.3.1 The Laxity. A measure for the �exibility (or urgency) in

charging of an EV is its remaining time minus the minimum re-

maining time needed to fully charge it (time needed to fully charge

it at the maximum rate). We refer to this measure as laxity.

De�nition 2.4 (Laxity). �e laxity of an EV i ∈ V at time t ∈ T
is de�ned as

6

`i (t ) =



[di − t]
+ −

ei (t )

r̄i
, t ≥ ai ,

+∞, t < ai ,

where “+” denotes the projection onto the set R+ of non-negative

real numbers.

Proposition 2.5 (Feasibility condition). �e algorithm A is
feasible on an instance I if and only if A gives charging rates that
result in non-negative laxities for all EVs, i.e.,

`i (t ) ≥ 0, i ∈ V, t ∈ T . (5)

Proposition 2.5 suggests that the minimum laxity among all EVs

can serve as a measure of the distance from infeasibility. A naive

approach—referred to as the least laxity �rst (LLF) algorithm—is

to charge EVs starting from those with the least laxity to those

with the most laxity. However, the LLF algorithm may compromise

the feasibility of certain o�ine feasible instances (see Section 4)

4
In ACN, the energy demand and departure time of EV i is gathered from user inputs

upon arrival.

5
�e feasibility is de�ned for an instance I with respect to an online algorithm A,

whereas the o�ine feasibility is de�ned for an instance I. O�ine feasibility is a

necessary condition for an instance I to be feasible with respect to algorithm A. An

instance I can be online feasible with respect to algorithm A but infeasible with

respect to another algorithm A′.
6

For convenience, laxity is de�ned on the whole temporal domain T .
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and cause excessive preemptions and oscillations in the charging

rate
7
, which may reduce the lifetime of certain ba�eries (e.g., Li-

ion) [13]. Alternatively, we consider maximizing the minimum

laxity among all EVs in order to maximize the feasibility margin,

maxr mini ∈V `i (T ). Although its solution may be non-unique, the

following optimization problem produces an unique solution that

is also a solution of maxr mini ∈V `i (T ).
8

Corollary 2.6 (Eqivalent problem). Consider the optimiza-
tion algorithm

max

r

∑
i ∈V

r̄i f (`i (T )) s.t. (1), (2),
∑
t ∈T

ri (t ) ≤ ei , i ∈ V (6)

where f is strictly increasing. Algorithm (6) is feasible for any o�ine
feasible instance.

However, we cannot solve (6) because of the lack of future infor-

mation of incoming EVs. Instead, we replace (6) with the following

online algorithm: at each time t ∈ T , given `i (t ), i ∈ V , compute
9

max

r (t )

∑
i ∈Vt

r̄i f (`i (t + 1)) s.t. (1), (2), ri (t ) ≤ ei (t ), i ∈ Vt . (7)

�e optimization problem (7) also maximizes the minimum laxity

mini ∈Vt `i (t+1), and thus maximizes the feasibility margin at time

t .10
Next, we show the structure of the optimal solution, which will

be used to construct a scalable algorithm.

Proposition 2.7 (Valley-filling solution). Assume that f is
strictly concave, strictly increasing, and twice continuously di�eren-
tiable. A solution to the optimization problem (7) is

r∗i (t ) = [r̄i (L(t ) − `i (t ) + 1)]
min(r̄i ,ei (t ))
0

, i ∈ Vt (8)

where [x]
b
a denotes the projection of the scalar x on interval [a,b],

and the value L(t ) satis�es∑
i ∈Vt

[r̄i (L(t ) − `i (t ) + 1)]
min(r̄i ,ei (t ))
0

=
∑
i ∈Vt

r∗i (t ) = min
*.
,
P (t ),

∑
i ∈Vt

min(r̄i , ei (t ))
+/
-

(9)

Observe that for EV i ∈ Vt with r̄i ≤ ei (t ), the charging rates

(8) result in `i (t + 1) = [L(t )]
`i (t )
`i (t )−1

. Hence, L(t ) can be considered

as a threshold of `i (t + 1), below which the energy is charged to

EV i . Since r∗i (t ) in (8) is an increasing function of L(t ), a binary

search can be used to �nd the threshold L(t ) in (9). Given L(t ),
the charging rates r∗i (t ) is then determined using (8). We formally

state this procedure in Algorithm 1, and name it as the smoothed
least-laxity-�rst (sLLF) algorithm.

�e computational complexity of the sLLF algorithm isO ( |Vt | +
log(1/δ )), where δ is the level of tolerable error. Lastly, we note

that the sLLF algorithm has other useful properties such as Least-

laxity-�rst property and fairness.

7
For example, consider a system of two EVs, where `1 (0) = 1.25, `2 (0) = 0.75

and r̄1 = r̄2 = P (t ) = 1, t ∈ T . EV 1 and EV 2 will be charged according to

(r1 (0), r2 (0)) = (0, 1), (`1 (1), `2 (1)) = (0.25, 0.75); (r1 (1), r2 (1)) = (1, 0), and so

on. In this example, both EV switches in-between charging and not charging.

8
Additionally, we can show the problem (6) also has a fairness property.

9
For more complex form of power limits, in optimization problems (6) and (7), the

power constraints (2) can be replaced by Ar (t ) ≤e .w . P (t ), for element-wise inequal-

ity and positive matrixA. �e Result in Corollary 2.6 also holds forAr (t ) ≤e .w . P (t ).
10

�e solution of (7) is also unique.

for t ∈ T do
Update set of EVsVt and laxities `i (t ), i ∈ Vt
Obtain L(t ) that solves (9) using bisection

Charge according to rates ri (t ) in (8)

end for

Algorithm 1: �e Smoothed Least-Laxity-First (sLLF) Algorithm.

Lemma 2.8 (Least-laxity-first property). If there exist two
EVs i, j ∈ V under the sLLF algorithm such that

`i (t ) ≤ `j (t ), (10)

`i (t + 1) > `j (t + 1), (11)

then either one of the following holds:

t ≥ di & ri (t ) = 0, (12)

t < di & t < dj & ej (t + 1) = 0 & ri (t ) , 0. (13)

Due to space constraints, the proofs are given in Appendix. �e

above properties will be useful in the analysis of feasibility condi-

tions.

3 PERFORMANCE ANALYSIS
�ere are two extreme cases, r̄i → ∞, i ∈ V and P (t ) → ∞, in

which online algorithms can be feasible for any o�ine feasible

instances. When r̄i → ∞ i ∈ V , or equivalently P (t ) ≤ mini ∈Vt r̄i
for all t ∈ T , the charging problem is identical to the single

processor preemptive scheduling problem where the processing

capacity is time-variant. For this case, the earliest-deadline-�rst

(EDF) algorithm is feasible for any o�ine feasible instances [20].

When P (t ) → ∞, or equivalently P (t ) ≥
∑
i ∈Vt r̄i (t ) for all t ∈ T ,

the sLLF algorithm is feasible for any o�ine feasible instances.

However, beyond the above two extreme cases, no online algorithm

can be feasible on all o�ine feasible instances [23]. �e hardness of

�nding feasible online algorithms motivates a quantitative measure

to evaluate the likelihood of an algorithm being feasible. Observe

that if more resources (e.g., P (t ), r̄i ) are allowed, an otherwise

infeasible problem instance may become online feasible under the

online algorithm. We use this (minimum) additional resource to

analyze the performance of the sLLF algorithm, where either power

P or both power P and peak rate r̄i are augmented. �e former

allows more EVs to be charged simultaneously, while the la�er

additionally allows EVs to be charged faster. As we will demonstrate,

these two ways of resource augmentation are qualitatively di�erent

and provide complementary insights into the behavior of the sLLF

algorithm.

3.1 Power Augmentation
In the case of power augmentation, the online algorithm is allowed

to use more power than the o�ine algorithm, i.e., Pon (t ) = (1 +
ϵ )P (t ), r̄oni = r̄i .

De�nition 3.1. [ϵ-power augmented instance] Given an EV charg-

ing instance I = {ai ,di , ei , r̄i ; P (t )}i ∈V,t ∈T , we de�ne its ϵ-power

augmented instance as

{ai ,di , ei , r̄i ; (1 + ϵ )P (t )}i ∈V,t ∈T (14)
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De�nition 3.2. [ϵ-power feasibility] An online algorithm A is ϵ-

power feasible ifA is feasible on the ϵ-power augmented instances

Ip (ϵ ) generated from any o�ine feasible instance I.
11

Unfortunately, there is no ϵ-power feasible online algorithm for

any �nite ϵ > 0 [17].
12

However, under a mild assumption, ϵ-power

feasibility condition can be obtained for a �nite ϵ . Assume that the

energy demand of each EV is bounded by X and the inter-arrival

time between consecutive arrivals are greater than N , i.e.,

ei ≤ X , i ∈ V, (15)

|ai − aj | > N , i, j ∈ V . (16)

We can characterize the relation between N and the su�cient

amount of resource augmentation ϵ as follows.

Theorem 3.3. Assume (15), (16). �e sLLF algorithm is ϵ-power
feasible with

ϵ =
Pmax

Pmin

{
logφ

( √
5X

NPmax

+
1

2

)
+ 2

}
− 1,

where φ = 1.61803 is the golden ratio.

In particular, when N ≥ X/Pmax,
13

we can further simplify the

feasibility condition in �eorem 3.3.

Corollary 3.4. If N ≥ X/Pmax, then the sLLF algorithm is 3-
power feasible.

3.2 Power and Rate Augmentation
In the case of power and maximum charging rate augmentation,

the online algorithm is allowed to use more power and higher

maximum rate than the o�ine algorithm: Pon (t ) = (1 + ϵ )P (t ),
r̄oni = (1 + ϵ )r̄i .

De�nition 3.5. [ϵ-augmented instance] Given an EV charging

instance I{ai ,di , ei , r̄i ; P (t )}i ∈V,t ∈T , we de�ne its ϵ augmented

instance as

{ai ,di , ei , (1 + ϵ )r̄i ; (1 + ϵ )P (t )}i ∈V,t ∈T (17)

De�nition 3.6. [ϵ-feasibility] An online algorithmA is ϵ-feasible

if A is feasible on the ϵ-augmented instances Ipr (ϵ ) generated

from any o�ine feasible instance I.

Contrary to the power augmentation, the sLLF algorithm is ϵ-

feasible for a �nite value of ϵ > 0 without any assumptions of the

arrival pa�erns.

Theorem 3.7. �e sLLF algorithm is ϵ-feasible with

ϵ = max

i ∈V

{
max

τ1,τ2∈[ai ,di ]

P (τ1)

P (τ2)
− max

τ ∈[ai ,di ]

r̄i
P (τ )

}
.

11
Alternatively, the (minimum) value of ϵ can also be interpreted as the constraints

on instances that are online feasible. �at is, given the original resource P (t ), r̄i (t ),
the algorithm is online feasible for any instances I = {ai , di , ei , r̄i ; P (t )/(1 +
ϵ ) }i∈V,t∈T that is o�ine feasible given the reduced resource P (t )/(1 + ϵ ), r̄i (t ).
Large ϵ restricts possible instances, thus less likely to be online infeasible.

12
It is shown in [17] that the LLF algorithm is not ϵ -power feasible for any ϵ > 0 for

uniform processors and time-invariant number of processors. Since their se�ing is a

special case of our se�ing, the same results extend to our se�ing.

13
If the inter-arrival time is N , and the power demand is X , the incoming energy

demand per unit time is X /N . Since the total power supply is Pmax per unit time, N
should be at leastX /P for o�ine feasiblity. �erefore,X /P ≤ N is a mild assumption.

As we demonstrate in the next section, the actual EV instance in

ACN and others requires smaller amount of resource augmentation

than the worse-case upper bound in practice.

4 SIMULATION
In this section, we show the performance of the sLLF algorithm

using trace-base simulation on real EV datasets and compare it to

that of several heuristic online EV charging algorithms.

4.1 Experimental Setup
Our simulations use datasets from the ACN deployment (CAGarage)

and Google’s facilities in Mountain View (Google mtv) and Sunny-

vale (Google svl). �ey include a total of 52,362 charging sessions

over more than 4,000 charging days in 2016 at 104 locations. See

Table 2 for a summary of the data. Each instance consists of one

day of charging. We can see that there is a large degree of variation

in the sojourn time and laxity of the vehicles in the instances.

For each instance, we compute the minimum power capacity in

which the instance is feasible by using o�ine an LP, i.e., we mini-

mize P = P (t ), subject to (1)-(3). �is corresponds to the minimum

power supply in order for the instance to be o�ine feasible. We

use this minimum power supply to generate an o�ine instance,

and tested if the instance is feasible under online algorithms. Be-

sides the sLLF algorithm, we also implemented some common

(online) scheduling algorithms: earliest-deadline-�rst (EDF), least-

laxity-�rst (LLF), equal share (ES), remaining energy proportional

(REP) [20], and an online linear program (OLP) [3]: . Due to space

constraints, precise description of each algorithm is given in Ap-

pendix C.

Instances EV sojourn time (m) Laxity (m)

CAGarage 92 321(11, 720) 231 (0.1, 660)

Google mtv 3793 149 (10, 720) 35 (0.001, 694)

Google svl 246 152 (11, 720) 38 (0.02, 676)

Table 2: Statistics of the EV charging instances. Each entry
is formated as average (minimum, maximum), unit (m) de-
notes minutes.

4.2 Results without Augmented Resources
We �rst evaluate the success rate of the online algorithms without

resource augmentation. We de�ne the success rate of an algorithm

as the percentage of online feasible instances under the algorithm.

�e sLLF algorithm achieves uniformly high success rate for all

datasets compared to other online algorithms considered. �e EDF,

ES, and REP algorithms perform much worse in terms of �nding

feasible schedules (Figure 1). �is is not surprising as feasibility

requires online algorithms to jointly consider deadline, maximum

charging rate, and remaining energy of each EV. However, none of

these (the EDF, ES and REP algorithms) consider all three factors

simultaneously. �e low success rate of the LLF algorithm, despite

its similarity to the sLLF algorithm, suggests the importance of

maximizing minimum laxity (see Section 2.3).

Next, we study what characteristics of the instances a�ect the

success rate. We �nd that the minimum normalized laxity and the

maximum ratio between EV sojourn times have high correlations

with the success rate. �e maximum ratio between EV sojourn times
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Figure 1: Success rates of �nding feasible online schedule
without resource augmentation.

(a)

(b)

Figure 2: Success rate of �nding feasible online schedule
without resource augmentation.

REP ES EDF LLF OLP sLLF

power 4.61 3.65 1.39 0.07 0.28 0.07

power and rate 4.61 3.24 0.54 0.05 0.28 0.05

Table 3: Minimum resource augmentation for online feasi-
bility for all instances. �e LLF and sLLF algorithms have
the smallest ϵ among algorithms considered.

is de�ned as the maximum ratio between the longest and shortest

EV sojourn times in the instances. �e minimum normalized laxity

of an EV is de�ned as the laxity divided by the EV sojourn times

`i (ai )/(di−ai ). Fig. 2 shows that as the minimum normalized laxity

increases, all algorithms considered have improved success rates.

Among these algorithms, the sLLF algorithm has one of the highest

success rate for all minimum normalized laxity. Fig. 2b shows

that as the maximum ratio between EV sojourn times increases, all

algorithms considered have decreased success rates. Among these

algorithms, the sLLF algorithm is least sensitive to the maximum

ratio between EV sojourn times and maintains highest success rate

across all sojourn times. Although instances with urgent schedule

(small minimum normalized laxity) and large variety of EV sojourn

times tend to have lower success rate, the sLLF algorithm has the

best performance in almost all scenarios.

(a) ϵ -power augmentation

(b) ϵ -power and rate augmentation

Figure 3: Success rate of �nding feasible online schedule un-
der resource augmentation.

4.3 Results with Augmented Resources
While the sLLF algorithm has shown high success rate in �nding

feasible online EV charging schedules without resource augmenta-

tion, we further analyze the performance of online algorithms with

resource augmentation in (a) power, and (b) both power and rate.

Fig. 3 shows that the sLLF and OLP algorithm have the highest suc-

cess rate of among other algorithms under various level of resource

augmentation. We can see that to achieve 95% success rate for the

sLLF algorithm, only 2% increase in resources is required. Table

3 shows that the minimum ϵ resource augmentation required for

each algorithm to achieve 100% feasibility for all instances is small-

est for the LLF and sLLF algorithms. Other algorithms (EDF, ES,

REP and OLP) require signi�cantly larger augmentation compared

to the sLLF algorithm. While the OLP algorithm has high success

rate without augmentation (Fig. 1), it requires much more resource

augmentation to achieve 100% success rate (Table 3).

5 CONCLUSION
We have formulated EV charging as a feasibility problem that meets

all EVs’ energy demands before departure under charging rate

constraints and total power constraint, and proposed an online

algorithm, the sLLF algorithm, that decides on the current charging

rates based on only the information up to the current time. We

characterize the performance of the sLLF algorithm analytically and

numerically. Numerical experiments with real-world data show that

it has signi�cantly higher rate of generating feasible EV charging

than several other common EV charging algorithms. By �nding

feasible EV charging schedules using only a small augmentation to

the absolute minimum resource needed for o�ine feasibility, our

proposed algorithm (sLLF) can signi�cantly reduce infrastructural

cost for EV charging facilities.
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APPENDIX
A PROOFS FOR SECTION 2

Proof (Proposition 2.5). Observe that feasibility is equivalent

with the condition

ei (di ) = 0, i ∈ V . (18)

Condition (5) implies that for any EV i ∈ V , `i (di ) = −ei (di )/r̄i ≥
0, which yields ei (di ) = 0. Next, notice that the laxity of EV i is

monotonically decreasing at t < di and constant at t ≥ di , i.e.,

`i (t ) = `i (t + 1) + 1 − ri (t )/r̄i ≥ `i (t + 1), t < di (19)

`i (t ) = `i (t + 1) t ≥ di (20)

�erefore, condition (21) implies that `i (t ) ≥ 0 at any time t ∈
T . �

Proof (Corollary 2.6). From constraint

∑
t ∈T ri (t ) ≤ ei and

f being strictly increasing, the objective function satis�es∑
i ∈V

f (`i (T )) ≤
∑
i ∈V

f (0).

Moreover, if an instance I is o�ine feasible, then there exists

some charging rates that achieve `i (T ) = 0,∀i ∈ V . Since the

laxity is monotonically decreasing at any t ∈ T , such charging

rates also satisfy `i (t ) ≥ 0, i ∈ V, t ∈ T . From Proposition 2.5,

`i (t ) ≥ 0, i ∈ V, t ∈ T implies that algorithm (6) is feasible on

instance I. �erefore, the cost

∑
i ∈V f (`i (T )) =

∑
i ∈V f (0) is

a�ainable. �

Proof (Proposition 2.5). Observe that feasibility is equivalent

with the condition

ei (di ) = 0, i ∈ V . (21)

Condition (5) implies that for any EV i ∈ V , `i (di ) = −ei (di )/r̄i ≥
0, which yields ei (di ) = 0. Next, notice that the laxity of EV i is

monotonically decreasing at t < di and constant at t ≥ di , i.e.,

`i (t ) = `i (t + 1) + 1 − ri (t )/r̄i ≥ `i (t + 1), t < di (22)

`i (t ) = `i (t + 1) t ≥ di (23)

�erefore, condition (21) implies that `i (t ) ≥ 0 at any time t ∈
T . �

Proof (Corollary 2.6). From constraint

∑
t ∈T ri (t ) ≤ ei and

f strictly increasing, the objective function satis�es∑
i ∈V

f (`i (T )) ≤
∑
i ∈V

f (0).

If an instance I is o�ine feasible, then there exists certain charging

rates that achieve `i (T ) = 0,∀i ∈ V , which yields

∑
i ∈V f (`i (T )) =∑

i ∈V f (0). Since the laxity is monotonically decreasing at any

t ∈ T , such charging rates also satisfy condition (5). From Propo-

sition 2.5, condition (5) implies that algorithm (6) is feasible on

instance I. �
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Proof (Proposition 2.7). From the Karush-Kuhn-Tucker (KKT)

conditions for the optimization problem (7),

ri (t ) ≥ 0 i ∈ Vt (24)

ri (t ) ≤ min(ei (t ), r̄i ) i ∈ Vt (25)∑
i ∈Vt

ri (t ) ≤ P (t ) i ∈ Vt (26)

f ′(li (t + 1)) + ¯λi − λi +v = 0 i ∈ Vt (27)

λi ≥ 0, ¯λi ≥ 0 i ∈ Vt (28)

λiri (t ) = 0, ¯λi {ri (t ) −min(ei (t ), r̄i )} = 0 i ∈ Vt (29)

where λi ,
¯λi ,v are the dual variables for constraints (24), (25), (26),

respectively. We consider three mutually exclusive cases: ri (t ) = 0,

ri (t ) ∈ (0,min(ei (t ), r̄i )), or ri (t ) = min(ei (t ), r̄i ). When ri (t ) = 0,

¯λi = 0 and

ri (t )/r̄i = f ′−1 (−v ) − li (t ) + 1 − λi ≤ f ′−1 (−v ) − li (t ) + 1, (30)

where the the inverse of f ′ exists since f ′ is strictly concave, strictly

increasing, and twice continuously di�erentiable. When ri (t ) ∈
(0,min(ei (t ), r̄i )), then from (29) (complementary slackness),

¯λi =
λi = 0. Substituting

¯λi = λi = 0 into (27), we obtain

li (t ) − 1 + ri (t )/r̄i = f ′−1 (−v ) (31)

When ri (t ) = min(ei (t ), r̄i ), λi = 0 and

ri (t )/r̄i = f ′−1 (−v ) − li (t ) + 1 + ˆλi ≥ f ′−1 (−v ) − li (t ) + 1. (32)

Combining (30)-(32), we obtain

ri (t ) = [r̄i ( f
′−1 (−v ) − li (t ) + 1)]

min(r̄i ,ei (t ))
0

, (33)

Because the same value of f ′−1 (−v ) is shared for all EVs at the

charging station, we can de�ne an variable L(t ) = f ′−1 (−v ). Since

the optimal solution is a�ained at the boundary

∑
i ∈Vt r

∗
i (t ) =

min

(
P (t ),

∑
i ∈Vt min(r̄i , ei (t ))

)
, we obtain the optimal solution

(8)-(9). �

Proof (Lemma 2.8). First notice that, by De�nition 2.4, it satis-

�es the following relation:

`i (t ) − 1 ≤ `i (t + 1) ≤ `i (t ), i ∈ V . (34)

First, consider the case ri (t ) = 0. �e evolution of `i satis�es

`i (t + 1) =



`i (t ) − 1 t < di ,

`i (t ) t ≥ di .
(35)

Suppose that t < di , combining (10) and (34) gives

`j (t + 1) ≥ `j (t ) − 1 ≥ `i (t ) − 1 = `i (t + 1),

which contradicts (11). �erefore, t ≥ di , and (12) follows.

Next, consider the case ri (t ) , 0. Non-zero ri (t ) implies t < di .
If t < dj , (10) and (11) jointly implies

r j (t )

r̄ j (t )
<

ri (t )

r̄i (t )
. (36)

Under the sLLF algorithm, (36) happens only when ej (t ) = r j (t ),
which leads to ej (t + 1) = 0. If t ≥ dj , then `j (t + 1) = `j (t ) ≥
`i (t ) ≥ `i (t+1), which contradicts (11). �erefore, (13) follows. �

B PROOFS FOR SECTION 3
Notations. Next we introduce some notation that will be used

later. Denote by At = {i ∈ V : ai ≤ t } the set of EVs that have

arrived by time t , Dt = {i ∈ At : di ≤ t or ei (t ) = 0} the set

of EVs that have either departed or �nished charging by time t ,
Vt = {i ∈ At : ai ≤ t < di } the set of EVs remaining in the charging

station at time t , and Ut = {i ∈ Vt : ei (t ) > 0} the set of EVs with

unful�lled energy demand at the beginning of time slot t , where we

reload the notation and use ei (t ) to denote the remaining energy

demand of EV i at the beginning of time slot t . In addition, denote

by A
[t1,t2]

= {i ∈ V : ai ∈ [t1, t2]} the set of EVs that arrive during

time interval [t1, t2], t1, t2 ∈ T . See Table 4 for a summary of

notation.

Denote the total energy supply to EVs in set S ⊆ V during the

interval [t1, t2] under the (feasible) o�ine algorithm by

Ψ∗
[t1:t2]

(S;I) :=
∑
i ∈S

t2∑
τ=t1

ri (τ ),

and the total energy supply to EVs in set S ⊆ V during the interval

[t1, t2] under the ϵ-power augmentation (or ϵ-augmentation) by

Ψϵ
[t1:t2]

(S;I) :=
∑
i ∈S

t2∑
τ=t1

ri (τ ),

We use superscript
∗

to indicate variables under an (feasible) o�ine

algorithm with original power limit P (t ) and maximum charging

rates r̄i , and use superscript
ϵ

to indicate variables under the aug-

mented resources.

Table 4: Additional Notation

At set of EVs arriving by time t
A

[t1,t2]
set of EVs arriving during interval [t1, t2]

Dt set of EVs either departed or �nished by time t
Vt set of EVs at the charging station at time t
Ut set of EVs un�nished charging at time t

Ψ
[t1:t2]

(S;I) total energy supplied to the set of EVs S

during the interval [t1, t2] under instance I

Ψϵ
[t1:t2]

(S;I) total energy supplied to S during [t1, t2]

under instance I with ϵ augmented resources

B.1 Preliminaries
B.1.1 The infeasibility condition. For a charging instance I =

{ai ,di , ei , r̄i ; P (t )}i ∈V,t ∈T that is not online feasible under the

sLLF algorithm, there are times when some EV has negative laxity.

Denote by t− the earliest among such times. Let F = {i ∈ At− :

`i (t−) < 0} denote the set of EVs arriving at the changing station by

time t− that have negative laxity, S1 = {i ∈ At− : `i (t−) ≥ 0 & di ≤
t−} the set of EVs with non-negative laxity that depart by time t−,

and S2 = {i ∈ At− : `i (t−) ≥ 0 & di > t−} the set of EVs with

non-negative laxity that remain at the charging station at time t−.

Sets F , S1 and S2 are mutually exclusive, and At− = F ∪ S1 ∪ S2.

Lemma B.1. When the sLLF algorithm is used on instance I, for
any i ∈ S2 and j ∈ F , the laxities satisfy

`i (t ) > `j (t ), t ∈ [max(ai ,aj ), t−]. (37)
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Proof (Lemma B.1). By the construction of S2, relation (37)

holds at t = t−. By Lemma 2.8, a necessary condition for the

inequality in (37) to �ip at some time t + 1 ≤ t− is for (13) to hold

for EV i . We show below that this condition cannot holds for any

EV in F or S1. For EVs in F , condition ej (t + 1) = 0 in (13) cannot

happen because negative laxity at some time implies the energy

demand will not be ful�lled. For EVs in S1, (37) holds only a�er

ej (t + 1) = 0 when they have energy demand ful�lled at time t + 1.

Consequently, condition (37) holds for all t ∈ [max(ai ,aj ), t−]. �

Notice that the sLLF algorithm prioritizes EVs with smaller laxity

so the presence of EVs with strictly greater laxity will not impact

the charging of the EVs with smaller laxity. Let
˜V = F ∪ S1, and

use it to de�ne another instance that does not contain the EVs in

S2:
˜I = {ai ,di , ei , r̄i ; P (t )}i ∈ ˜V,t ∈T . Following Corollary can be

obtained as a consequence of Lemma B.1.

Corollary B.2. Regardless of the actual instance being I or ˜I,
the EVs in ˜F are charged in exactly the same way under the sLLF
algorithm by time t−.

B.1.2 The infeasibility condition of an augmented instance. Let

I be an EV charging instances that are o�ine feasible. Consider

using the sLLF algorithm with the ϵ augmented resources (either

power augmentation Pon (t ) = ϵP (t ), or power and rate augmen-

tation Pon (t ) = ϵP (t ), r̄oni (t ) = r̄i (t )). Now, the above result from

previous section, we derive a condition for the sLLF algorithm being

infeasible on some online feasible instance, which holds for both

power augmentation and power and rate augmentation.

Since the EVs in S1 are fully charged by time t− under both the

sLLF algorithm and the o�ine algorithm, we have

Ψϵ
[0:t−]

(S1;I) = Ψ∗
[0:t−]

(S1;I), (38)

where S1,F are the sets de�ned above under the sLLF algorithm

using augmented resources. Notice that `i (t ) ≥ 0, ∀t ∈ T is a

necessary condition for EV i to be feasible. �us, for EV i ∈ F ,

the o�ine algorithm must maintain `i (t−) ≥ 0. Given that laxity

`i (t ) is strictly decreasing in the remaining energy demand ei (t ),
the total energy ful�lled by t− under the o�ine algorithm must be

strictly greater than that with the sLLF algorithm, i.e.,

Ψϵ
[0:t−]

({i};I) < Ψ∗
[0:t−]

({i};I), i ∈ F (39)

from which

Ψϵ
[0:t−]

(F ;I) < Ψ∗
[0:t−]

(F ;I). (40)

Recall that
˜V = V\S2. Combining (38) and (40), we have

Ψϵ
[0:t−]

( ˜V ;I) < Ψ∗
[0:t−]

( ˜V ;I). (41)

Corollary B.2 implies

Ψϵ
[0:t−]

(i;I) = Ψϵ
[0:t−]

(i; ˜I), i ∈ ˜V, (42)

Ψϵ
[0:t−]

( ˜V ;I) = Ψϵ
[0:t−]

( ˜V ;
˜I). (43)

Further, since the charging instance I is o�ine feasible, its sub-

instance
˜I is o�ine feasible too. Similar to equations (38)-(41), we

can show that

Ψϵ
[0:t−]

(S1;
˜I) = Ψ∗

[0:t−]
(S1;

˜I), (44)

Ψϵ
[0:t−]

({i}; ˜I) < Ψ∗
[0:t−]

({i}; ˜I), i ∈ F , (45)

Ψϵ
[0:t−]

(F ;
˜I) < Ψ∗

[0:t−]
(F ;

˜I), (46)

Ψϵ
[0:t−]

( ˜V ;
˜I) < Ψ∗

[0:t−]
( ˜V ;

˜I). (47)

B.2 Proof of �eorem 3.3
Consider the use of the sLLF algorithm on an o�ine feasible in-

stance I = {ai ,di , ei , r̄i ; P (t )}i ∈V,t ∈T under ϵ-power augmented

resources. Let

n = (1 + ϵ )
Pmin

Pmax

. (48)

Form ≤ n, we de�ne the earliest time to charge at a power greater

thanmPmax for the rest of the time until t− as

tm = min



t ∈ T :

∑
j ∈Vt

min(r̄ j , ej (τ )) ≥ mPmax,τ ∈ [t , t−]



. (49)

Let Tm = [tm−1, tm ) and T̂m = [tm , t−] and denote their lengths by

|Tm | and |T̂m |.
We �rst present a lemma that is used in the proof of �eorem

3.3.

Lemma B.3. For any integer i ≤ n − 1, the following two relations
hold:

Ψ∗
[0:ti ]

(ATi ;
˜I) − Ψϵ

[0:ti ]
(ATi ;

˜I) > Pmax |T̂i+1 |, (50)

|Ti | > |T̂i+1 |. (51)

Proof (Lemma B.3). On one hand, from de�nition (49),∑
j ∈V(ti−1

)−1

min(r̄ j , ej (ti−1 − 1)) < (i − 1)Pmax.

�is implies that the EVs that have arrived before ti−1 are charged

at a total power of at most (i−1)Pmax at ti−1 and a�er. On the other

hand, from de�nition (49), the total power supply is at least iPmax

during the interval Ti+1 = [ti , ti+1]. �erefore, the total charing

power to the EVs that arrive a�er ti−1 is at least Pmax during Ti+1.

Since the o�ine algorithm can only use a power of at most Pmax,

for the EVs that arrive a�er ti−1 we obtain

Ψ∗
[0;ti+1]

(AT̂i−1

;
˜I) − Ψϵ

[0;ti+1]
(AT̂i−1

;
˜I)

< Ψ∗
[0;ti ]

(AT̂i−1

;
˜I) − Ψϵ

[0;ti ]
(AT̂i−1

;
˜I).

(52)

�e same argument can be applied to the interval T̂i+1 = [ti+1, t−].

From de�nition (49), the total charging power is at least (i + 1)Pmax

during T̂i+1. �erefore, during T̂i+1, the total charing power to

the EVs that arrive a�er ti−1 is at least 2Pmax. Since the o�ine

algorithm can only use a power of at most Pmax, the total energy

supply to EVs in T̂i−1 under the augmented resources is greater

than that without augmented resources, i.e.,

0 < Ψ∗
[0;t−]

(AT̂i−1

;
˜I) − Ψϵ

[0;t−]
(AT̂i−1

;
˜I)

< Ψ∗
[0;ti+1]

(AT̂i−1

;
˜I) − Ψϵ

[0;ti+1]
(AT̂i−1

;
˜I) − Pmax |T̂i+1 |.

(53)
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Combining (52)-(53), we have

Ψ∗
[0;ti ]

(AT̂i−1

;
˜I) − Ψϵ

[0;ti ]
(AT̂i−1

;
˜I) > Pmax |T̂i+1 |. (54)

Since the set ATi is identical to the subset of AT̂i−1

that contains

only the EVs that have arrived by ti ,

Ψ∗
[0;ti ]

(ATi ;
˜I) − Ψϵ

[0;ti ]
(ATi ;

˜I)

= Ψ∗
[0;ti ]

(AT̂i−1

;
˜I) − Ψϵ

[0;ti ]
(AT̂i−1

;
˜I).

(55)

Combining (54) and (55) leads to relation (50).

Finally, as all EVs in ATi arrives a�er ti−1, during Ti the o�ine

algorithm can charge a total energy of at most |Ti |Pmax, we obtain

Ψ∗
[0:ti ]

(ATi ;
˜I) − Ψϵ

[0:ti ]
(ATi ;

˜I) ≤ |Ti |Pmax.

which together with (50) leads to (51). �

Proof (Theorem 3.3). Suppose that there exists an o�ine fea-

sible instance I = {ai ,di , ei , r̄i ; P (t )}i ∈V,t ∈T such that the sLLF

algorithm is not feasible with ϵ-power augmented resources. �en,

from Appendix B.1.1, there exists another o�ine feasible instance

˜I = {ai ,di , ei , r̄i ; P (t )}i ∈ ˜V,t ∈T such that

Ψϵ
[0:t−]

({i}; ˜I) < Ψ∗
[0:t−]

({i}; ˜I), i ∈ V . (56)

Whenm = 1, we obtain

∑
j ∈Vt

1
−1

min(r̄ j , ej (t1 − 1)) < Pmax. Let

S = {i ∈ AT1
: ei (t1) > 0} ⊂ AT1

denote the set of EVs that arrive

during T1 and have not yet been fully charged by t1. Because the

number of EVs is upper bounded by Pmax/r̄min (from (49)), and the

EVs in AT1
\S are all fully charged,

Pmax |T̂2 | ≤ Ψ∗
[0:t−]

(AT1
;

˜I) − Ψϵ
[0:t−]

(AT1
;

˜I)

= Ψ∗
[0:t−]

(S;
˜I) − Ψϵ

[0:t−]
(S;

˜I)

≤ XPmax/r̄min.

�is leads to

|T̂2 | <
X

r̄min

. (57)

At time t < tm−1, we have∑
j ∈Vtm−1

−1

min(r̄ j , ej (tm−1 − 1)) < (m − 1)Pmax,

which implies that there are at most (m − 1)Pmax/r̄min EVs with

unful�lled energy demand by time tf . Meanwhile, at time t ≥ tm ,

we have ∑
j ∈Vtm

min(r̄ j , ej (tm )) ≥ mPmax,

which implies that there are at least mPmax/r̄max EVs with unful-

�lled energy demand during Tm−1. �erefore, the number of EVs

that arrive during [tm−1, tm] is greater than the following:

mPmax

r̄max

−
(m − 1)Pmax

r̄min

≥
Pmax

r̄min

. (58)

Since the inter-arrival periods of EVs are at least N , the length of

T̂m−1 satis�es

|T̂m−1 | ≥
PmaxN

r̄min

. (59)

Now, consider the following recursion:

|T̂2 | = |T̂3 | + |T3 |

≥ |T̂3 | + |T̂4 | ≥ 2|T̂4 | + |T̂5 |

≥ 3|T̂5 | + 2|T̂6 | ≥ 5|T̂6 | + 3|T̂7 |

≥ · · · ≥ fk−2
|T̂m−1 | + fk−3

|T̂m |,

where fk is the Fibonacci sequence de�ned by f1 = 1, f2 = 1 and

fk = fk−1
+ fk−2

for k ≥ 3. From the above, we have

|T̂2 | > fm−2 |T̂m−1 |.

Combining equations (57)-(59) gives

X

r̄min

> |T2 | > fm−2 |T̂m−1 | > fm−2

PmaxN

r̄min

(60)

Fromm ≤ n for n de�ned in (48), we obtain

⌊
(1 + ϵ )

Pmin

Pmax

⌋
− 2 =m − 2

= logφ

(√
5fn−2 +

1

2

)
< logφ

( √
5X

NPmax

+
1

2

)
,

which gives (1 + ϵ )Pmin/Pmax < logφ
(√

5X/NPmax + 1/2
)
+ 2.

�

Corollary 3.4. Suppose there exists an o�ine feasible instance

I that is not feasible under the sLLF algorithm with 3-power aug-

mentation. Using the same argument of the proof for �eorem 3.3,

we obtain inequality (60). However, from assumption

f1
PmaxN

r̄min

≤
X

r̄min

,

which contradicts (60). �

B.3 Proof of �eorem 3.7
Proof (Theorem 3.3). Suppose that there exists an instance

I = {ai ,di , ei , r̄i ; P (t )}i ∈V,t ∈T such that the sLLF algorithm is

not feasible with ϵ-augmented resources. We then have equation

(47), repeated here for convenience:

Ψϵ
[0:t−]

( ˜V ;
˜I) < Ψ∗

[0:t−]
( ˜V ;

˜I)

for another instance
˜I = {ai ,di , ei , r̄i ; P (t )}i ∈ ˜V,t ∈T .

Let S ( ˜V ) be the set of EVs in the instance
˜I that receive strictly

less energy under the online algorithm than under the o�ine algo-

rithm by some time t at which Ψϵ
[0:t ]

( ˜V ;
˜I) < Ψ∗

[0:t ]
( ˜V ;

˜I):

S ( ˜V ) =
{
i ∈ ˜V : ∃t ∈ T s.t. Ψϵ

[0:t ]
({i}; ˜I) < Ψ∗

[0:t ]
({i}; ˜I)

& Ψϵ
[0:t ]

( ˜V ;
˜I) < Ψ∗

[0:t ]
( ˜V ;

˜I)
}
.

In view of (47), S ( ˜V ) , ∅. Consider EV j = arg mini ∈S ( ˜V ) ai

that arrives the earliest among those in S ( ˜V ). �ere exists a time

t ∈ [aj ,dj ] such that

Ψϵ
[0:t ]

({j}; ˜I) < Ψ∗
[0:t ]

({j}; ˜I), (61)

Ψϵ
[0:t ]

( ˜V ;
˜I) < Ψ∗

[0:t ]
( ˜V ;

˜I). (62)
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Notice that Ψϵ
[0:aj−1]

( ˜V ;
˜I) < Ψ∗

[0:aj−1]
( ˜V ;

˜I) can only happen

when there is another EV in S ( ˜V ) that arrives before EV j, which

however contradicts the de�nitions of S ( ˜V ) and j. So,

Ψϵ
[0:aj−1]

( ˜V ;
˜I) ≥ Ψ∗

[0:aj−1]
( ˜V ;

˜I),

which implies

Ψϵ
[aj :t ]

( ˜V ;
˜I) < Ψ∗

[aj :t ]
( ˜V ;

˜I). (63)

Now, let us take a look at the energy demand ful�lled during

the interval [aj , t] under the sLLF algorithm with ϵ-augmented

resources. De�ne the overloaded times

To =


t ∈ [aj , t] :

∑
i ∈ ˜V

ri (t ) = (1 + ϵ )P (t )



and underloaded times

Tu =


t ∈ [aj , t] :

∑
i ∈ ˜V

ri (t ) < (1 + ϵ )P (t )


,

we have |To | + |Tu | = t + 1 − aj . �e total energy demand ful-

�lled during the overloaded period is lower bounded by |To |(1 +
ϵ ) minτ ∈[aj ,dj ] P (τ ), while that during the underloaded period is at

least |Tu |(1 + ϵ )r̄ j . Hence, the total and individual energy demands

ful�lled during [aj , t] are lower bounded by

(1 + ϵ )

(
|Tu |r̄ j + |To | min

τ ∈[aj ,dj ]
P (τ )

)
≤ Ψϵ

[aj :t ]
( ˜V ;

˜I), (64)

(1 + ϵ ) |Tu |r̄ j ≤ Ψϵ
[aj :t ]

({j}; ˜I). (65)

Next, let us take a look at the energy demand ful�lled during

the interval [aj , t + 1] by the o�ine algorithm without resource

augmentation. �e total energy ful�lled is upper bounded by

Ψ∗
[aj :t ]

( ˜V ;
˜I) ≤ (t + 1 − aj ) max

τ ∈[aj ,dj ]
P (τ ), (66)

and the energy ful�lled to EV j is upper bounded by

Ψ∗aj :t (j ) ≤ (t + 1 − aj )r̄ j . (67)

By equations (61), (65) and (67), we have

|Tu |(1 + ϵ ) < (t − aj + 1). (68)

By equations (63) (64) and (66), we have

(1 + ϵ ) ( |Tu |r̄ j + |To | min

τ ∈[aj ,dj ]
P (τ ))

< (t + 1 − aj ) max

τ ∈[aj ,dj ]
P (τ ).

Combining equation (68) becomes

( |Tu | + |To |) (1 + ϵ ) min

τ ∈[aj ,dj ]
P (τ )

< (t − aj + 1) ( max

τ ∈[aj ,dj ]
P (τ ) + min

τ ∈[aj ,dj ]
P (τ ) − r̄ j )

Notice that |To | + |Tu | = t + 1 − aj , the above inequality leads to

ϵ < max

τ1,τ2∈[aj ,dj ]

P (τ1)

P (τ2)
− min

i ∈V
max

τ ∈[ai ,di ]

r̄i
P (τ )
.

�

C BENCHMARK ALGORITHMS
We summarize the online algorithms evaluated in Section 4. See

[20] for a review of each algorithm.

Earliest Deadline First (EDF). All EVs inVt are sorted by their

deadlines di in an increasing order. �e available power P (t ) is

assigned to EVs in this order up to min(r̄i , ei (t )).

Least laxity �rst algorithms (LLF). All EVs in Vt are sorted by

their laxities `i (t ) in an increasing order. �e available power P (t )
is assigned to EVs in this order up to min(r̄i , ei (t )).

Equal Share (ES). �e available power supply P (t ) is divided

equally to all connected EVs able to charge more energy, each EV

receives the minimum between their fair share and their maximum

charging rate. Repeat until either P (t ) power is supplied or no more

EV can be charged further.

Remaining Energy Proportional (REP). �e available power P (t )
is divided to EVs in proportion to their remaining energy demand

ei (t ). Each EV receives the minimum between their proportional

share and their maximum charging rate. Repeat until either P (t )
power is supplied or no more EV can be charged further.

Online Linear Program (OLP) [3]. At each time t , the charging

rate ri (t ) to EV i ∈ Vt is provided according to the solution of the

following LP:

min

∑
i ∈Vt

T∑
τ=t

τri (τ )

subject to

T∑
τ=t

ri (τ ) = ei (t ), ∀i ∈ Ut∑
i ∈Uτ

ri (τ ) ≤ P (τ ), ∀τ = t , . . . ,T

0 ≤ ri (t ) ≤ r̄i

�e constraints of the online LP to �nd a feasible schedule for all the

currently active EVs assuming no EV arrivals in the future, while

objective function encourages the charging station to charge EVs

as early as possible.
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