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a b s t r a c t

Data centers have emerged as promising resources for demand response, particularly for
emergency demand response (EDR), which saves the power grid from incurring blackouts
during emergency situations. However, currently, data centers typically participate in EDR
by turning on backup (diesel) generators, which is both expensive and environmentally
unfriendly. In this paper, we focus on ‘‘greening’’ demand response in multi-tenant data
centers, i.e., colocation data centers, by designing a pricing mechanism through which the
data center operator can efficiently extract load reductions from tenants during emergency
periods for EDR. In particular, we propose a pricing mechanism for both mandatory and
voluntary EDR programs, ColoEDR, that is based on parameterized supply function bidding
and provides provably near-optimal efficiency guarantees, both when tenants are price-
taking and when they are price-anticipating. In addition to analytic results, we extend the
literature on supply function mechanism design, and evaluate ColoEDR using trace-based
simulation studies. These validate the efficiency analysis and conclude that the pricing
mechanism is both beneficial to the environment and to the data center operator (by
decreasing the need for backup diesel generation), while also aiding tenants (by providing
payments for load reductions).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Data centers have emerged as a promising demand response opportunity. However, data center demand response today
is not environmentally friendly since data centers typically participate by turning on backup (diesel) generators. In this
paper, we focus on designing a pricing mechanism for multi-tenant data centers, which is a crucial class of data centers for
demand response. Our pricingmechanism allows the data center operator to obtain load shedding among tenants efficiently,
reducing the need for use of backup (diesel) generation and thus greening data center demand response.

Data center demand response. Power-hungry data centers have been quickly expanding in both number and scale to
support the exploding IT demand, consuming 91 billion kilowatt-hour (kWh) electricity in 2013 in the US alone [1]. While
traditionally viewed purely as a negative, the massive energy usage of data centers has recently begun to be recognized as
an opportunity. In particular, because the energy usage of data centers tends to be flexible, they are promising candidates
for demand response, which is a crucial tool for improving grid reliability and incorporating renewable energy into the power
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grid. From the grid operator’s perspective, a data center’s flexible power demand serves as a valuable energy buffer, helping
balance grid power’s supply and demand at runtime [2].

To this point, data centers are a promising, but still largely under-utilized opportunity for demand response. However,
this is quickly changing as data centers play an increasing role in emergency demand response (EDR) programs. EDR is the
most widely-adopted demand response program in the US, representing 87% of demand reduction capabilities across all
reliability regions [3]. Specifically, during emergency events (e.g., extreme weather or natural disasters), EDR coordinates
many large energy consumers, including data centers, to shed their power loads, serving as the last protection against cas-
cading blackouts that could potentially result in economic losses of billions of dollars [4,5]. The US EPA has identified data
centers as critical resources for EDR [6], which was attested to by the following example: on July 22, 2011, hundreds of data
centers participated in EDR by cutting their electricity usage before a large-scale blackout would have occurred [5].

While data centers are increasingly contributing to EDR, they typically participate by turning on their on-site backup
diesel generators, which is neither cost effective nor environmentally friendly. For example, in California (a major data
center market), a standby diesel generator often produces 50–60 times more nitrogen oxides (a smog-forming pollutant)
compared to a typical power plant for each kWh of electricity, and diesel particulate represents the state’s most significant
toxic air pollution problem [7].

In addition, relying on diesel generation for EDR presents emerging challengeswhich, if left unaddressed,may forfeit data
center’s EDR capability. First, as EDR becomesmore frequent [4,8], the current financial compensation offered by power grid
to data centers (for committed energy reduction during EDR) may not be enough to cover the growing cost of diesel gener-
ation. Second, data center operators are aggressively cutting the huge capital investment in their power infrastructure (e.g.,
10–25$/W [9,10]), by down-sizing the capacity of diesel generator and uninterrupted power supply (UPS) systems [11].
Such under-provisioning of diesel generationmay compromise EDR capability. Therefore, to retain and encourage data cen-
ter participation in EDR without contaminating the environment, it is critical and urgent that data centers seek alternative
ways to shed load.

Consequently, modulating server energy for green EDR (as well as other demand response programs such as regulation
service [12]) has received an increasing amount of attention in recent years, e.g., [13–17,12,2]. These studies leverage various
widely-available IT computing knobs (e.g., server turning on/off and workload migration) in data centers and provide algo-
rithms to optimize them for participation in demand responsemarkets. Importantly, these are not simply theoretical studies.
For example, a field study by Lawrence Berkeley National Laboratory (LNBL) has illustrated that data centers can reduce en-
ergy consumption by 10%–25% in response to demand response signals,without noticeably impacting normal operation [18].
Demand response in collocation data centers. While existing studies on data center demand response show promising
progress, they are primarily focused on owner-operated data centers (e.g., Google) whose operators have full control over
both servers and facilities. Unfortunately, such companiesmay actually be the least likely to participate in demand response
programs, because many of their workloads are extremely delay sensitive and their data centers have been optimized for
minimum delay.

In this paper, we focus on another type of data centers—multi-tenant colocation data centers (e.g., Equinix). These have
been investigated much less frequently, but are actually better targets for demand response than owner-operated data cen-
ters. In a colocation data center (simply called ‘‘colocation’’ or ‘‘colo’’), multiple tenants deploy and keep full control of their
own physical servers in a shared space, while the colo operator only provides facility support (e.g., high-availability power
and cooling). Colos are less studied than owner-operated data centers, but they are actually more common in practice. Co-
los offer data center solutions to many industry sectors, and serve as physical home to many private clouds, medium-scale
public clouds (e.g., VMware) [19], and content delivery providers (e.g., Akamai). Further, a recent study shows that colos
consume nearly 40% of data center energy in the US, while Google-type data centers collectively account for less than 8%,
with the remaining going to enterprise in-house data centers [1].

In addition to consuming a significant amount of energy (more than Google-type data centers), colos are often located
in places more useful for demand response. While many mega-scale owner-operated data centers are built in rural areas,
colos are mostly located in metropolitan areas (e.g., Los Angeles, New York) [20], which are the very places where EDR is
most needed. For all these reasons, colos are key participants in EDR programs.

Further, tenants’ workloads in colos are highly heterogeneous, and many tenants run non-mission-critical workloads
(e.g., lab computing [21]) that have very high scheduling flexibilities, different delay sensitivities, peak load periods, etc.,
which is ideal for demand response participation. Thus, tenants’ load shedding potentials, if appropriately exploited, can
altogether form a green alternative to diesel generation for colo EDR. Nonetheless, tenants manage their own servers inde-
pendently and may not have incentive to cooperate with the operator for EDR, thus raising the research question: how can
a colo operator efficiently incentivize its tenants’ load shedding for EDR?1

Contributions of this paper. In this paper, we focus on ‘‘greening’’ colocation demand response by extracting load reduction
from tenants instead of relying on backup diesel generation. We study bothmandatory EDR, a type of EDR program in which
participants sign contracts and are obliged to reduce loads when requested [8], and voluntary EDR, where participants vol-
untarily reduce loads for financial compensation upon grid request [4]. In both cases, we propose a new pricing mechanism

1 Tenants receive UPS-protected power from the colo operator and share cooling systems. In other words, tenants’ total energy consumption is not
directly provided by the grid and includes non-metered cooling energy, which makes tenants ineligible for direct participation in EDR [4].



N. Chen et al. / Performance Evaluation 91 (2015) 229–254 231

with which colo operators can extract load shedding from tenants. In particular, our proposed approach, called ColoEDR,
can effectively provide incentives for tenants to reduce energy consumption during EDR events, complementing (and even
substituting for) the high-cost and environmentally-unfriendly diesel generation.

ColoEDR works as follows. After an EDR signal arrives at the colo operator, tenants bid using a parameterized supply
function, and then the colo operator announces a market clearing price which, when plugged into the bids, specifies how
much energy tenants will reduce and howmuch they will be paid. Participation by the tenants is easy, since they are asked
to bid only one parameter, which can be viewed as a proxy of howmuch flexibility in energy reduction they have at thatmo-
ment. This participation can be automated and so can be easily incorporated into current practice [22], and mimics the way
generation resources participate in electricity markets more broadly. For example, colo operators, like Verizon Terremark,
already communicate with their tenants in preparation for an EDR event.

The main technical contribution of the paper is the analysis of the efficiency of the supply function mechanism proposed
in ColoEDR. In particular, while there is a large literature studying supply function bidding [23–27], our setting here is novel
and different. For mandatory EDR, the colo operator can either satisfy the EDR request using flexibility from the tenants (as
in prior supply funding literature) or through its backup diesel generator. Thus, the diesel generator is an outside option that
allows for elasticity in the amount of response extracted from the tenants. Further, the colo operator can combine and balance
between its two options (i.e., tenant load shedding and backup generator) in order tominimize costs. For voluntary EDR, the
amount of response extracted from the tenants is also an elastic decision by the colo operator, since there is no obligation for
the colo to reduce energy. Thus, for bothmandatory and voluntary EDR, the elastic amount of response from tenants creates a
multi-stage game and adds a considerable complexity as compared to the standard setting without such elasticity, e.g., [23].

Despite the added complexity, our analysis precisely characterizes the equilibriumoutcome, bothwhen tenants are price-
taking and when they are price-anticipating. In both cases, our results highlight that ColoEDR suffers little performance
loss compared to the socially optimal outcome, both from the operator’s and the tenants’ perspectives. However, our
analysis does highlight one possible drawback of ColoEDR. In the worst case, it is possible that ColoEDRmay result in using
significantly more on-site diesel generation than would the socially optimal. However, this bad event occurs only in cases
where one tenant has an overwhelmingly fraction of the servers and has a unit cost (for energy reduction) just below that of
on-site diesel generation. Such an exploitation ofmarket power is unlikely to be possible in practicalmulti-tenant colocation
data centers where multiple tenants with comparable sizes house their servers.

In addition to our theoretical analysis, we investigate a case study of (mandatory) EDR in Section 6 using trace-based
experiments. The results further validate the design of ColoEDR, and show that it achieves the mandatory energy reduction
for EDR while benefiting tenants through financial incentives and decreasing the operator’s cost. Moreover, our simula-
tion study shows that the efficiency loss in practical settings is even lower than what is suggested by the analytic bounds.
This is especially true for the amount of on-site generation, which the analytic results suggest can (in the worst-case) be
significantly larger than socially optimal but in realistic settings is very close to the social optimal.

2. Modeling multi-tenant data center EDR

Our focus is the design of a mechanism for a colo operator to extract tenant load reductions in response to an EDR signal.
Thus, we need to begin by describing a model for a colo operator.

Recall that the colo operator is responsible for non-IT facility support (e.g., high-availability power, cooling). We cap-
ture the non-IT energy consumption using Power Usage Effectiveness (PUE) γ , which is the ratio of the total data center
energy consumption to the IT energy consumption. Typically, γ ranges from 1.1 to 2.0, depending on factors such as outside
temperature.

When the operator receives an EDR signal from the LSE (Load Serving Entity), it has two options for satisfying the load
reduction. First, without involving the tenants, the colo operator can use its on-site backup diesel generator.2 We denote
the amount of energy reduction by diesel generation by y and the cost per kWh of diesel generation (e.g., for fuels) by α.

Alternatively, the colo operator could try to extract IT energy reductions from the tenants. We consider a setting where
there are N tenants, i ∈ N = {1, 2, . . . ,N}. When shedding energy consumption, a tenant i will incur some costs and we
denote the cost from shedding si by a function ci(si). These costs could be due to wear-and-tear, performance degradation,
workload shifting, etc. For the purposes of ourmodel, we do not specify which technique reduces the IT energy, only its cost.
For details on how one might model such costs, see [28–31]. A standard, natural assumption on the costs is the following.

Assumption 1. For each n, the cost function cn(sn) is continuous, with cn(sn) = 0 if sn ≤ 0. Over the domain sn ≥ 0, the
cost function cn is convex and strictly increasing.

Intuitively, convexity follows from the conventional assumption that the unit cost increases as tenants reduce more
energy (e.g., utilization becomes higher when servers are off, leading to a faster increase in response time of tenants’
workloads).

2 Other alternatives, e.g., battery [11], usually only last for <5 min. So, diesel generation is the typical method [6].
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3. Pricing tenant load shedding in mandatory EDR

EDR is the last line of protection against cascading power failures, and represents 87% of demand reduction capabilities
across all the US reliability regions [3]. In general, there are two types of EDR programs: mandatory and voluntary (also
called economic) [4,8]. We focus on mandatory EDR first, and return to voluntary EDR in Section 5.

For mandatory EDR, participants typically sign contracts with a load serving entity (LSE) in advance (e.g., 3 years ahead
in Pennsylvania–New Jersey–Maryland Interconnection (PJM) [4]) and receive financial rebates for their committed energy
reduction even if no EDR signals are triggered during the participation year, whereas non-compliance (i.e., failure to cut
load as required during EDR) incurs a heavy penalty [4]. If an LSE anticipates that an emergency will occur, participants are
notified, usually at least 10min in advance, and obliged to fulfill their contracted amounts of energy reduction for the length
of the event, which may span a few minutes to a few hours.

In mandatory EDR, the colo operator can reduce load in response to an EDR signal either through tenants or by turning
on an on-site generator. Since the mandatory EDR target is fixed, the operator must balance between paying tenants for re-
duction and using on-site generation in order to minimize cost. Note that tenants’ load reduction can also reduce the usage
of diesel generator, mitigating environmental impacts. Nonetheless, the challenge is that the operator does not know the
tenant cost functions, and so cannot determine the cost-minimizing price.

Consequently, the operator has two options to determine the price: (i) predict the tenant supply function and compute
prices based on the predictions, or (ii) allow tenants to supply some information about their cost functions through bids.
Clearly, there is a tradeoff here between the accuracy of predictions and the manipulation possible in the bids. Both of these
approaches have been studied in the literature [32,16,23,24,33], though not in the context of colo demand response. In gen-
eral, the broad conclusion is that approach (i) is appropriatewhen predictions are accurate and one bidder hasmarket power
(e.g., is significantly larger than other bidders). While market power is a considerable issue for the participation of owner-
operated data centers in demand response programs due to their large size compared to other participants, it is not an issue
within a specific colo that housesmultiple tenants (typically of comparable sizes), and sowe adopt approach (ii) in this paper.

Specifically, we design amechanism, named ColoEDR, where tenants bid using parameterized supply functions and then,
given the bids, the operator decides howmuch load to shed via tenants and howmuch to shed via on-site generation. In the
following, we describe the mechanism and then contrast our approach with other potential alternatives.

Note that, throughout this paper, we focus on one EDR event, thus we omit the time index. In the case of multiple
consecutive EDR events,ColoEDRwill be executed once at the beginning of each event, as is standard in the literature [16,34].

3.1. An overview of ColoEDR

The operation of ColoEDR is summarized below, and then discussed in detail in the text that follows.

1. The colo operator receives an EDR reduction target δ and broadcasts the supply function S(·, p) specified by (1) to tenants;
2. Participating tenants respond by placing their bids bn;
3. The colo operator decides the amount of on-site generation y and market clearing price p to minimize its cost, using Eqs.

(2) to set the market clearing price p and (3) to set y in order to minimize the cost of EDR;
4. EDR is exercised. ∀n ∈ N , tenant n sheds S(bn, p), and receives pS(bn, p) reward.

Given the overview above, we now discuss each step in more detail.
Step 1. Upon receiving an EDR notification of an energy reduction target δ, the colo operator broadcasts a parameterized

supply function S(b, p) to tenants (by, e.g., signaling to the tenants’ server control interfaces, which are widely in use
today [22]). The form of S(b, p) is the following parameterized family3:

S(bn, p) = δ −
bn
p

. (1)

where p is an offered reward for each kWh of energy reduction and bn is the bidding values that can be chosen by tenant
n. This form is inspired by [23], where it is shown that by restricting the supply function to this parameterized family, the
mechanism can guide the firms in the market to reach an equilibriumwith desirable properties.4 Note that, to be consistent
with the supply function literature, we exchangeably use ‘‘price’’ and ‘‘reward rate’’ wherever applicable.

Step 2. Next, according to the supply function, each participating tenant submits its bid bn to the colo operator. This bid
specifies that, at each price p, it is willing to reduce S(bn, p) units of energy. The bid is chosen by tenants individually to
maximize their own utility and can be interpreted as, e.g., the amount of IT service revenue that tenant n is willing to forgo.
Note that bn can be chosen to ensure that tenant nwill not be required to reduce more energy than its capacity. To see this,
note that since the operator is cost-minimizing, p(b, y) ≤ α always holds, i.e., the market clearing price is lower than the

3 The supply function allows tenants to have negative supply, i.e., tenants consume more energy intentionally, which is neither profit maximizing nor
practical. We show in Section 4 that energy reduction of each tenant is always nonnegative in both equilibrium and social optimal outcomes.
4 [23] studies the case where firms bid to supply an inelastic demand, which is equivalent to fixing the diesel generation y = 0 in our case. Allowing the

operator to choose y in a cost-minimizing manner leads to significantly different results, as will be shown in Sections 4.1 and 4.2.
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unit cost of diesel generation. Hence, if Kn is the capacity of reduction for tenant n, as long as bn ≥ α(δ − Kn), then

S(bn, p) = δ −
bn
p

≤ δ −
bn
α

≤ Kn.

An important note about the tenant bids is that the supply function is likely of a different form than the true cost function
cn, and so it is unlikely for the tenants to reveal their cost functions truthfully. This is necessary in order to provide a simple
form for tenant bids. Bidding their true cost functions is too complex and intrusive. However, a consequence of this is that
onemust carefully analyze the emergent equilibrium to understand the efficiency of the pricing mechanism.We study both
the cases of price-taking and price-anticipating equilibrium in Section 4.

Step 3. After tenants have submitted their bids, the colo operator decides the amount of energy y to produce via on-site
generation and the clearing price p. Given y, the market clearing price has to satisfy


n S(p(b), bn) + y = δ, thus

p(b, y) =


n
bn

(N − 1)δ + y
. (2)

To determine the amount of local generation y, the operator minimizes the cost of the two load-reduction options, i.e.,
y = argmin

0≤y≤δ

(δ − y) · p(b, y) + αy. (3)

Step 4. Finally, EDR is exercised and tenants receive financial compensation from the colo operator via the realized price
in (2), shed load S(p, bn), and on-site generation produces (3).

3.2. Discussion

To the best of our knowledge, this paper represents the first attempt to design a supply function bidding mechanism for
colocation demand response. Although alternative mechanisms may be applicable, there are compelling advantages to the
supply function approach. First, bidding for the tenants is simple—they only need to communicate one number, and it is
already common practice for operators to communicate with tenants before EDR events [22], so the overhead is marginal.
Second, the colo operator collects just enough information (i.e., how much energy reduction each tenant will contribute to
EDR), while tenants’ private information (i.e., howmuch performance penalty/cost each for energy reduction) is masked by
the form of the supply function and hence not solicited. Third, ColoEDR guarantees that the colo operator will not incur a
higher cost than the case where only backup generators are used. Further, ColoEDR pays a uniform price to all participating
tenants and hence ensures fairness.

The most natural alternative bidding mechanism to supply function bidding is a Vickrey–Clarke–Groves (VCG)-based
mechanism, as is suggested in [35]. While VCG-based mechanisms have the benefit of incentive compatibility, these mech-
anisms violate all the four properties discussed above. Under such approaches, tenants must submit very complex bids
describing their precise cost functions, the true private cost of tenants is disclosed, payment made to tenants may be un-
bounded, and prices to different tenants are differentiated and thus raises unfairness issues.

Due to these shortcomings, VCG-based mechanisms are typically not adopted in complex resource allocation settings
such as power markets, where supply-function based designs are common [23]. In fact, nearly all generation markets use
variations of supply function bidding.

4. Efficiency analysis of ColoEDR for mandatory EDR

Given the ColoEDR mechanism described above, our task now is to characterize its efficiency. There are two potential
causes of inefficiency in the mechanism: the cost minimizing behavior of the operator and the strategic behavior (bidding)
of the tenants. In particular, since the forms of the tenant’s cost functions are likely more complex than the supply function
bids, tenants cannot bid their true cost function even if they wanted to. This means that evaluating the equilibrium outcome
is crucial to understanding the efficiency of the mechanism.

Further, the equilibrium outcome that emerges depends highly on the behavior of the tenants—whether they are price-
taking, i.e., they passively accept the offered market price p as given when deciding their own bids; or price-anticipating, i.e.,
they anticipate how the price p will be impacted by their own bids. We investigate both models, in Sections 4.1 and 4.2,
respectively.

In both cases, the goal of our analysis is to assess the efficiency of ColoEDR. To this end, we adopt a notion of a (socially)
optimal outcome, and focus on the following social cost minimization (SCM) problem.

SCM : min αy +


i∈N

ci(si) (4a)

s.t. y + γ ·


i∈N

si = δ (4b)

si ≥ 0, ∀i ∈ N , y ≥ 0 (4c)
where si and ci are tenant i’s energy reduction and corresponding cost, respectively.
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The objective in SCM can be interpreted as the tenants’ cost plus the colo operator’s cost. Note that the internal payment
transfer between the colo operator and tenants cancels, and does not impact the social cost. Also, note that payment from
the LSE to the colo operator is not included in the social cost objective, since it is independent of how the operator obtains
the amount δ of load reduction. Additionally, we do not include the option of ignoring the EDR signal and taking the penalty,
since the non-compliance penalties are typically extreme [4]. Finally, the Lagrange multiplier of (4b) can be interpreted as
the social optimal price p∗, i.e., given this price as reward for energy reduction, each tenant will individually reduce their
energy by sn that corresponds to the social cost minimization solution in (4).

Before moving to the analysis, in order to simplify notation, we suppress the PUE γ by, without loss of generality, setting
γ = 1. To obtain results for γ ≠ 1, simply take the results assuming γ = 1 and modified them in the following way: let y′,
δ′ and α′ be the diesel generation, EDR target and diesel price that appear in the results for γ = 1, replace them by y′

= y/γ ,
δ′

= δ/γ , and α′
= αγ where y, δ, α are the respective quantities when γ ≠ 1.

4.1. Price-taking tenants

When tenants are price-taking, theymaximize their net utility, which is the difference between the payment they receive
and the cost of energy reduction, given the assumption that they consider their action does not impact the price. A price-
taking tenant n will try to maximize the following payoff Pn(bn, p):

Pn(bn, p) = pSn(bn, p) − cn(Sn(bn, p)) (5a)

= pδ − bn − cn


δ −

bn
p


. (5b)

Here, the price-taking assumption implies that the variable p is considered to be as is. The price-taking assumption normally
holds when the market consists of many players of similar sizes who have little power to impact the market clearing price.
The other market model, when tenants are price-anticipating, is analyzed in Section 4.2. The market equilibrium for price-
taking tenants is thus defined as follows:

Definition 1. A triple (b, p, y) is a (price-taking) market equilibrium if each tenant maximizes its payoff defined in (5),
market is cleared by setting price p according to (2), and the amount of on-site generation is decided by (3), i.e.,

Pn(bn; p) ≥ Pn(b̄n; p) ∀b̄n ≥ 0, n = 1, . . . ,N. (6)

p =


i∈N

bi

(N − 1)δ + y
. (7)

y = argmin
0≤y≤δ

(δ − y) · p(b, y) + αy. (8)

4.1.1. Market equilibrium characterization
The key to our analysis is the observation that the equilibrium can be characterized by an optimization problem. Oncewe

have this optimization, we can use it to characterize the efficiency of the equilibrium outcome. This approach parallels that
used in [23]; however, the optimization obtained has a different structure due to local diesel generation. Note that, though
we use an optimization to characterize the equilibrium, the game is not a potential game since the objective (9a) is not a
potential function.

Our first result highlights that, given any choice for on-site generation, a uniquemarket equilibrium exists for the tenants,
and can be characterized via a simple optimization.

Proposition 1. Under Assumption 1, when tenants are price-taking, for any on-site generation level 0 ≤ y < δ, there exists
a market equilibrium, i.e., a vector bt

= (bt1, . . . , b
t
N) ≥ 0 and a scalar p > 0 that satisfies (2), and the resulting allocation

sn = S(bn, p) is the optimal solution of the following

min
s


i∈N

ci(si) (9a)

s.t.

i∈N

si = (δ − y), (9b)

si ≥ 0, ∀i ∈ N . (9c)

This result is a key tool for understanding the overall market outcome. Intuitively, the operator running ColoEDR is more
likely (than the social optimal) to use on-site generation, since this reduces the price paid to tenants. The following propo-
sition quantifies this statement.
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Proposition 2. Under Assumption 1, it is optimal for price-taking tenants to use on-site generation if and only if

α <


n
bn


(N − 1)δ

.5 (10)

However, when the operator is profit maximizing, it will turn on on-site generation if and only if

α <
N

N − 1


n
bn


(N − 1)δ

. (11)

This proposition is an important building block because the most interesting case to consider is when it is optimal to use
some on-site generation and some tenant load shedding, i.e., δ > y∗ > 0. Otherwise the EDR requirement should be entirely
fulfilled by tenants, and the analysis reduces to the case of an inelastic demand, as studied in [23]. Thus, subsequently, we
make the following assumption, which ensures that on-site generation is valuable.

Assumption 2. The unit cost of on-site generation is cheap enough that the optimal on-site generation is non-zero, i.e., α
satisfies (10).

Note that, when Assumption 2 holds, by first-order optimality condition of (3) we have

y =




i∈N

bi


Nδ

α
− (N − 1)δ, (12)

and so the market clearing price for the tenants given on-site generation is

p =


i∈N

bi

(N − 1)δ + y
=




i∈N

bi


α

Nδ
. (13)

Using these allows us to prove a complete characterization of the market equilibrium under price-taking tenants. This
theorem is the key to our analysis of market efficiency.

Theorem 3. When Assumptions 1 and 2 hold there is a unique market equilibrium, i.e., a vector bt
= (bt1, . . . , b

t
N) ≥ 0, yt > 0

and a scalar pt > 0 that satisfies (6)–(8), and the resulting allocation (st , yt) where stn = S(btn, p
t) is the optimal solution of the

following problem

min
s,y


n

cn(sn) +
α

2Nδ
(y + (N − 1)δ)2 (14a)

s.t.

n

sn = δ − y, (14b)

sn ≥ 0, ∀n, y ≥ 0. (14c)

4.1.2. Bounding efficiency loss
We now use Theorem 3 to bound the efficiency loss due to strategic behavior in the market. Denote the socially optimal

on-site generation by y∗, the optimal price that leads to the optimal allocation si, ∀i ∈ N by p∗, and let yt and pt be the
allocation under the price-taking assumption.

Our first result highlights that, due to the cost-minimizing behavior of the operator, the equilibrium outcome uses more
on-site generation and pays a lower price to the tenants than the social optimal.

Proposition 4. Suppose that Assumptions 1 and 2 hold. When tenants are price-taking, the operator running ColoEDR uses
more on-site generation and pays a lower price for power reduction to its tenants than the social optimal. Specifically, yt ≥ y∗

and N−1
N p∗

≤ pt ≤ p∗.

5 We adopt the convention that 0
0 = 0 and x

0 = +∞ when x > 0. Therefore, when N = 1, unless the bid is 0, the condition is always satisfied.
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Now, we move to more detailed comparisons. There are three components of market efficiency that we consider: social
welfare, operator cost, and tenant cost.

First, let us consider the social cost.

Theorem 5. Suppose that Assumptions 1 and 2 hold. Let (st , yt) be the allocation when tenants are price-taking, and (s∗, y∗) be
the optimal allocation. Then the welfare loss is bounded by:


n cn(s

t
n) + αyt ≤


n cn(s

∗
n) + αy∗

+ αδ/2N.

Importantly, this theorem highlights that the market equilibrium is quite efficient, especially if the number of tenants is
large (the efficiency loss decays to zero as O(1/N)). However, the market could maintain good overall social welfare at the
expense of either the operator or the tenants. The following results show this is not true.

Let costo(p, y) be the operator’s cost, i.e.,

costo(p, y) = p(δ − y) + αy. (15)

Then, we have the following results.

Theorem 6. Suppose that Assumptions 1 and 2 are satisfied. The cost of colo operator with price-taking tenants is smaller than
the cost in the socially optimal case. Further, we have costo(p∗, y∗) − αδ/N ≤ costo(pt , yt) ≤ costo(p∗, y∗).

4.2. Price-anticipating tenants

In contrast to the price-taking model, price-anticipating tenants realize that they can change the market price by their
bids, i.e., that p is set according to (13), and adjust their bids accordingly. The price-anticipating model is suitable when the
market consists of a few dominant players, who have significant power to impact the market price through their bids, i.e.,
the oligopoly setting. Clearly, this additional strategic behavior can lead to larger efficiency loss. However, in this section,
we show that the extra loss is surprisingly small, especially when a large number of tenants participate in ColoEDR.

Given bids from the other tenants, each price-anticipating tenant n optimizes the following cost over bidding value bn

Qn(bn, b−n) = p(b)Sn(bn, p) − cn(Sn(bn, p))

where we use b−n to denote the vector of bids of tenants other than n; i.e., b−n = (b1, . . . , bn−1, bn+1, . . . , bN). Thus,
substituting (1) and (13), we have

Qn(bn; b−n) =




n
bn


αδ

N
− bn − cn

δ −
bn
m

bm


Nδ

α

 . (16)

Note that the payoff function Qn is similar to the payoff function Pn in the price-taking case, except that the tenants
anticipate that the colo operator will set the price p according to p = p(b, y) from (13).

Definition 2. A triple (b, p, y) is a (price-anticipating) market equilibrium if each tenant maximizes its payoff defined in
(16), the market is cleared by setting the price p according to (2) and the amount of on-site generation is decided by (3), i.e.,

Qn(bn; bn) ≥ Qn(b̄n; bn) ∀b̄n ≥ 0, n = 1, . . . ,N (17)

p =


n
bn

(N − 1)δ + y
. (18)

y = argmin
0≤y≤δ

(δ − y) · p(b, y) + αy. (19)

Note that our analysis in this section requires one additional technical assumption about the tenant cost functions.

Assumption 3. For all tenants, the marginal cost of energy reduction at 0 is greater than α
2N , i.e.,

∂+cn(0)
∂sn

≥
α
2N , ∀n.

This assumption is quitemild, especially if the number of tenantsN is large. Intuitively, it says that the unit cost of on-site
generation is competitive with the cost of tenants reducing their server energy.

4.2.1. Market equilibrium characterization
Our analysis of market equilibria proceeds along parallel lines to the price-taking case. We again show that there ex-

ists a unique equilibrium and, furthermore, that the tenants and operator behave in equilibrium as if they were solving an
optimization problem of the same form as the aggregate cost minimization (4), but with ‘‘modified’’ cost functions.
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Theorem 7. Suppose that Assumptions 1–3 are satisfied, then there exists a unique equilibrium of the game defined by (Q1,
. . . ,Qn) satisfying (17)–(19). For such an equilibrium, the vector sa defined by san = S(p(ba), ban) is the unique optimal solution
to the following optimization:

min

n

ĉn(sn) +
α

2Nδ
(y + (N − 1)δ)2 (20a)

s.t.

n

sn = δ − y (20b)

y ≥ 0, sn ≥ 0, n = 1, . . . ,N, (20c)

where, for sn ≥ 0,

ĉn(sn) =
1
2


cn(sn) + sn

α

2N


+

1
2

 sn

0


∂+cn(z)

∂z
−

α

2N

2

+ 2
∂+cn(z)

∂z
zα
Nδ

dz, (21)

and for sn < 0, ĉn(sn) = 0.

Although the form of ĉn(sn) looks complicated, there is a simple linear approximation that gives useful intuition.

Lemma 8. Suppose that Assumptions 1–3 are satisfied. For all modified cost ĉn, n ∈ 1, . . . ,N, for any 0 ≤ sn ≤ δ,

cn(sn) ≤ ĉn(sn) ≤ cn(sn) + sn
α

2N
, .

Furthermore, when the left or right derivatives of ĉ(·) is defined, it can be bounded by

∂−cn(sn)
∂sn

≤
∂−ĉ(sn)

∂sn
≤

∂+ĉ(sn)
∂sn

≤
∂+cn(sn)

∂sn
+

α

2N
.

The form of Lemma 8 shows that the difference between the modified cost function in (21) and the true cost diminishes
as N increases, and this is the key observation that underlies our subsequent results upper bounding the efficiency loss of
ColoEDR.

4.2.2. Bounding efficiency loss
Wenowuse Theorem7 to bound the efficiency loss due to strategic behavior. Note that, by comparing to both the socially

optimal and the price-taking outcomes, we can understand the impact of both strategic behavior by the operator and the
tenants.

Our first result focuses on comparing the price-anticipating and price-taking equilibrium outcomes. It highlights that
price-anticipating behavior leads to tenants receiving higher price while shedding less load.

Theorem 9. Suppose Assumptions 1–3 hold. Let (pt , yt) be the equilibrium price and on-site generation when tenants are price-
taking, and (pa, ya) be those when tenants are price-anticipating, then we have, yt ≤ ya ≤ yt + δ/2 and pt ≤ pa ≤ pt + α/2N.

Next, combining Theorem 9 and Proposition 4 yields the following comparison between the price-anticipating and
socially optimal outcomes.

Corollary 10. Suppose Assumptions 1–3 hold. When tenants are price-anticipating, an operator running ColoEDR uses more
on-site generation and pays lower market price than in the socially optimal case, i.e., ya ≥ y∗ and N−1

N p∗
≤ pa ≤ p∗.

Now, we move to more detailed comparisons. There are three components of market efficiency that we consider: social
cost, operator cost, and tenant cost.

First, let us consider the social cost.

Theorem 11. Suppose that Assumptions 1–3 hold. Let (sa, ya) be the allocation when tenants are price-anticipating, and (s∗, y∗)
be the optimal allocation. The welfare loss is bounded by:


n cn(s

a
n) + αya ≤


n cn(s

∗
n) + αy∗

+ αδ/N.

Similarly to the price-taking case, the efficiency loss in the price-anticipating case decays to zero as O(1/N), only with
a larger constant. Also, as in the case of price-taking tenants, we again see that neither the tenants nor the operator suffers
significant efficiency loss.
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Table 1
Performance guarantee of ColoEDR compared to the social optimal allocation.

Tenants Price ratio Colo saving Welfare loss

Price-taking [
N−1
N , 1] [0, αδ/N] [0, αδ/2N]

Price-anticipating [
N−1
N , 1] [0, αδ/N] [0, αδ/N]

Theorem 12. Suppose that Assumptions 1–3 hold. The cost of colo operator for price-anticipating tenants is smaller than the cost
in the socially optimal case. Further, we have

costo(p∗, y∗) −
αδ

N
≤ costo(pa, ya) ≤ costo(p∗, y∗),

costo(pa, ya) −
αδ

N
≤ costo(pt , yt) ≤ costo(pa, ya).

Finally, let us end by considering the amount of on-site generation used in equilibrium. Here, in the worst-case, the
on-site generation at equilibrium for price-anticipating tenants can be arbitrarily worse than the socially optimal, i.e., the
socially optimal can use no on-site generation while the equilibrium outcome uses only on-site generation.

Theorem 13. Suppose that Assumptions 1–3 hold. For any ε > 0, N ≥ 1, there exist cost functions c1, . . . , cN , such that the
on-site generation in the market equilibrium compared to the optimal is given by ya − y∗

≥ δ − ε.

This is a particularly disappointing result since a key goal of the mechanism is to obtain load shedding from the tenants.
However, the proof emphasizes that this is unlikely to occur in practice. In particular, the worst-case scenario is that there
exists a dominant (monopoly) tenant, which is unlikely in a multi-tenant colo, that has a cost function asymptotically linear
with unit cost roughly matching the on-site generation price α. We confirm this in a case study in Section 6.

4.3. Discussion

The main results for the price-taking and price-anticipating analyses are summarized in Table 1. Note that simplified
bounds are presented in the table, to ease interpretation, and the interested reader should refer to the theorems in Sec-
tions 4.1 and 4.2 for the actual bounds. Also, note that the benchmark for social cost we consider is an ideal, but not achiev-
able, mechanism.

To summarize the results in Table 1 briefly, note first that ColoEDR always benefits the operator, since the price paid to
tenants to reduce energy is always less than the socially optimal price, and the total cost incurred by operator for energy
reduction is also less than that of the social optimal. Secondly, ColoEDR also gives the tenants approximately the social op-
timal payment, since the operator’s additional benefit is bounded above by αδ/N , and the welfare loss is bounded above by
αδ/N . This naturally means that the loss in payment for tenants compared to the social optimal is at most 2αδ/N , which
approaches 0 as N grows. Thirdly, regardless of tenants being price-taking or price-anticipating, ColoEDR is approximately
socially cost-minimizing as the number of tenants grows.

However, while ColoEDR is good in terms of operator, tenant, and social cost, it may not use the most environmentally
friendly form of load reduction: in the worst case, the upper bound on the extra on-site generation that ColoEDR uses is not
decreasing with N . However, the analysis highlights that this worst-case occurs when there exists a dominant tenant with
unit cost of energy reduction that is consistently just below the cost of diesel over a large range of energy reduction. As our
case study in Section 6 shows, this is unlikely to occur in practice. So, ColoEDR can be expected to use an environmentally
friendly mix in most realistic situations.

5. Pricing tenant load shedding in voluntary EDR

We now turn frommandatory EDR to voluntary EDR and show how the analysis and design of ColoEDR can be extended.
Under voluntary EDR, a colo operator is offered a certain compensation rate for load reduction and can cut any amount of
energy at will without any obligation. Voluntary EDR often supplements mandatory EDR, and both are widely adopted in
practice [4,8]. Since the colo operator can freely decide on the amount of energy to cut based on the compensation rate [4],
the amount of energy reduction from tenants is fully elastic, differing frommandatory EDRwhere the total energy reduction
(including diesel generation if necessary) needs to satisfy a constraint δ.

In the following, we formulate the problem and generalize ColoEDR for the voluntary EDR setting. Furthermore, we il-
lustrate that the efficiency analysis, though more complicated, parallels that of mandatory EDR.

5.1. Problem formulation

During a voluntary EDR event, the LSE offers a reward of u for each unit of energy reduction (or diesel generation if
applicable). In our setting, the colo operator aims at maximizing its profit through extracting loads from tenants using pa-
rameterized supply function bidding, as considered for mandatory EDR.
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A key difference with the case of mandatory EDR is that, since the reduction is flexible, diesel generation need not be
considered. In particular, if the reward offered the LSE for reduction is larger than the cost of diesel, then the operator
can contribute its whole diesel capacity and, if the reward is smaller than the cost of diesel, no diesel need be used. In the
mandatory EDR setting, operator needs to use diesel generationwhen tenants’ energy reduction (i.e., tenants’ bids are high) is
not enough, in order tomeet the reduction requirement δ; in the voluntary EDR case, there is nomandatory energy reduction
target and thus, the optimization of diesel generation by the operator is separable from the optimization of tenant reduction.

This yields a situation where the net profit (from tenant reduction) received by the colo operator is:
u · d − p · d (22)

where p is the unit price the colo operator pays to the tenants to solicit d units of reduction in aggregate from N tenants,
where tenant i has reduction capacity Di.
An overview of ColoEDR. It is straightforward to adapt ColoEDR to this setting. We outline its operation in four steps below,
which parallel the steps in the case of mandatory EDR.
1. The colo operator receives the voluntary EDR reduction price u and broadcasts the supply function S(bn, p) to tenants

according to

Si(bi, p) = Di −
bi
p

, (23)

where Di is the capacity of tenant i for reduction determined exogenously.
2. Participating tenants respond by placing their bids bn in order to maximize their own payoff;
3. The colo operator decides the total amount of reduction from tenants d and market clearing price p to maximize its

utility. Given the bids b = (b1, . . . , bn), if the operator decides to offer d amount of energy reduction to the utility, then
the market clearing price p needs to satisfy

n
i=1 Si(bi, p) = d and hence, p will be

p =

n
i=1

bi

n
i=1

Di − d
. (24)

Hence, to maximize the operator’s profit, the operator will choose d such that

d = argmax
0≤d≤

n
i=1

Di

(u − p)d =

u −

n
i=1

bi

n
i=1

Di − d

 d. (25)

4. Voluntary EDR is exercised. ∀n ∈ N , tenant n sheds S(bn, p), and receives pS(bn, p) reward.

Discussion. A key difference in the operation of ColoEDR for mandatory EDR and voluntary EDR is in the form of the supply
function (23). In particular, for voluntary EDR, we allow heterogeneity in the supply function for tenants in terms of their
capacity Dn. Recall, however, that in the case of mandatory EDR the required reduction capacity δ was used. This difference
stems from the fact that the reduction target is flexible for voluntary EDR and also creates significant challenges—both in
terms of efficiency, since it allows the chance of market power to emerge because of capacity differences, and for analysis,
since it adds considerable complexity.

5.2. Efficiency analysis of ColoEDR for voluntary EDR

Given the adaptation of ColoEDR to the voluntary EDR setting, it is natural to ask how the efficiency of the mechanism
changes when the operator has full flexibility in deciding the amount of response to a voluntary EDR signal. Intuitively, the
increased flexibility leads to the possibility of more inefficiency, but how large is this effect?

We again quantify efficiency through a comparison with the (socially) optimal outcome. Assume that each tenant has
a cost ci(·) associated with energy reduction that is convex, increasing, and ci(x) = 0, ∀x ≤ 0 (Assumption 1). Then, the
allocation that maximizes social utility (the sum of operator’s and tenants’ utility) solves the following problem

max
d,s

ud −

n
i=1

ci(si) (26a)

subject to
n

i=1
si = d (26b)

0 ≤ si ≤ Di. (26c)
Finally, note that our analysis makes the following natural assumptions on the unit price u and the marginal cost of each

tenant. Note that these are analogous to Assumptions 2 and 3, respectively.
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Assumption 4. The market clearing price p is lower than the price offered by the utility for any d > 0, i.e., u ≥

n
i=1 bin
i=1 Di

.

Assumption 5. The marginal cost of each tenants satisfies ∂+cn(z)
∂z


z=0

≥
νnu
2 , ∀n.

Before moving to the main results, let us first define some notations. Letting νn =
Dnn
i=1 Di

, we have


n νn = 1. Here
νn behaves like ‘‘market share’’ of tenant n in the voluntary EDR market. In the mandatory EDR case, νn = 1/N for all n.
Furthermore, define ν = maxn νn, as the ‘‘dominant share’’ in load reduction among the tenants, and D = maxn Dn.

5.3. Market equilibrium characterization

As in the case of mandatory EDR, we consider both price-taking and price-anticipating tenants.

5.3.1. Price-taking tenants
Recall that a price-taking tenant considers the price as is without accounting for the impact of its bidding decision on the

market clearing price. Hence, given the other tenants’ bidding decisions, each price-taking tenant n optimizes the following
payoff over bidding value bn,

Pn(bn, b−n) = pSn(bn, p) − cn(Sn(bn, p)) = pDn − bn − cn


Dn −

bn
p


.

So, in a price-taking equilibrium (b, d, p), Pn(bn; b−n) ≥ Pn(b̄n; b−n) holds for each tenant n over all b̄n ≥ 0. Also, the
market clearing price p must satisfy (24) and the total reduction d must satisfy (25). Using techniques similar to the proof
of Theorem 3, we can completely characterize the price-taking equilibrium of ColoEDR in voluntary EDR as follows:

Theorem 14. There exists a unique equilibrium of the game defined by (P1, . . . , PN) for ColoEDR in voluntary EDR. For such an
equilibrium, the vector st defined by stn = S(p(bt), btn) is the unique optimal solution to the following optimization:

max ud −
ud2

2

n
Dn

−


n

cn(sn) (27a)

s.t.

n

sn = d (27b)

d ≥ 0, 0 ≤ sn ≤ Dn, n = 1, . . . ,N. (27c)

5.3.2. Price-anticipating tenants
Recall that a price-anticipating tenant actively seek to change market price through its bid to maximize payoff. Hence,

given the other tenants’ bidding decisions, each price-anticipating tenant n optimizes the following payoff over bidding
value bn, the payoff function Qn(bn, b−n) can be derived in a similar manner as (16):

Qn(bn, b−n) = p(b)Sn(bn, p) − cn(Sn(bn, p)) = νn


m

bm

u
n

i=1

Di − bn − cn

Dn −
bn

m
bm

 n
i=1

Di

u

 .

So, in a price-anticipating equilibrium (b, d, p), wemust haveQn(bn; b−n) ≥ Qn(b̄n; b−n) for all n over all b̄n. Also, themarket
clearing price p must satisfy (24) and the total reduction d must satisfy (25).

Using techniques similar to the proof of Theorem 7, we can completely characterize the price-anticipating equilibrium
of ColoEDR in voluntary EDR as follows.

Theorem 15. There exists a unique equilibrium of the game defined by (Q1, . . . ,QN) for ColoEDR in voluntary EDR. For such an
equilibrium, the vector sa defined by san = S(p(ba), ban) is the unique optimal solution to the following optimization:

max ud −
ud2

2

n
Dn

−


n

ĉn(sn) (28a)

s.t.

n

sn = d (28b)

d ≥ 0, 0 ≤ sn ≤ Dn, n = 1, . . . ,N, (28c)
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Table 2
Performance guarantee of ColoEDR compared to the social optimal allocation.

Tenants Price ratio Colo extra profit Welfare loss

Price-taking [1 −
d∗
n Dn

, 1] [0, ud∗2/


n Dn] [0, ud∗2/2


n Dn]

Price-anticipating [1 −
d∗
n Dn

, 1] [0, ud∗2/


n Dn] [0, u(


n Dnνn + d∗2/


n Dn)/2]

Table 3
Performance guarantee of ColoEDR when tenants are price-
anticipating compared to them being price-taking.

Price markup Load reduction Operator’s cost

[0, uν/2] [−D/2, 0] [0, uD]

where, for sn ≥ 0,

ĉn(sn) =
1
2


sn

νnu
2

+ cn(sn)


+
1
2

 sn

0

νnu
2

−
∂+cn(z)

∂z

2

+ 2
∂+cn(z)

∂z
zu
i
Di

dz, (29)

and for sn < 0, ĉn(sn) = 0.

Like in the case of mandatory EDR, the above characterization can be approximated using a modified cost function when
νn is small, i.e., when there are a large number of tenants and all tenants have similar market shares.

Lemma 16. For 0 ≤ sn ≤ Dn, the modified cost in (29) can be upper and lower bounded by,

cn(sn) ≤ ĉn(sn) ≤ cn(sn) + sn
νnu
2

, .

Furthermore, where the left or right derivatives are defined, we have

∂−cn(sn)
∂sn

≤
∂−ĉn(sn)

∂sn
≤

∂+ĉn(sn)
∂sn

≤
∂+cn(sn)

∂sn
+

νnu
2

. (30a)

5.4. Bounding efficiency loss

We now use the characterization results in Theorems 14 and 15 to analyze the social efficiency of ColoEDR in the
voluntary EDR setting for both price-taking and price-anticipating tenants.

Theorem 17. For price taking tenants, the welfare loss of ColoEDR in voluntary EDR is bounded by udt −


n cn(s
t
n) ≥

ud∗
−


n cn(s
∗
n) −

ud∗2

2


n Dn
. Moreover, the bound is tight.

Theorem 18. For price anticipating tenants, the welfare loss of ColoEDR in voluntary EDR is bounded by uda −


n cn(s
a
n) ≥

ud∗
−


n cn(s
∗
n) −

u
2


n Dnνn +

d∗2
n Dn


.

Theorem 17 highlights that the price-taking market equilibrium is efficient when the optimal energy reduction d∗ is
small. This is due to the profit maximizing behavior of the operator: when the social optimal d∗ is large, the operator has
greater opportunity to raise his profit by lowering the market price.

Comparing Theorem 18 with Theorem 17, we can see that the additional welfare loss due to price-anticipating behavior
of tenants is a function of νn, the market share of the tenants. It is easy to see that the additional loss of social welfare is
minimized when νn = 1/N for all n, i.e., when the reduction capacity of each tenant is equal.

Additionally, we can obtain tight bounds on the market clearing price, energy reduction quantity, and operator’s profit
in a similar fashion as our analysis done for the mandatory EDR case using Theorems 14 and 15. Due to space constraints,
we summarize the results in Tables 2 and 3.

Table 2 shows that as the optimal reduction d∗ increases, there is more opportunity for the operator to profitably reduce
market price and increase his own profit. Table 3 shows further that, when tenants are price-anticipating, they will drive
the market clearing price up, provide less energy reduction and reduce the operator’s profit. However, all these additional
losses can be bounded by linear functions of ν, the dominant share of the energy reduction capacity. Hence, the loss due to
price-anticipating behavior of tenants is minimized D1 = D2 = · · · = DN .
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a b

Fig. 1. (a) Workload traces. (b) Energy reduction for PJM’s EDR on January 7, 2014 [37].

6. Case study

Our goal in this section is to investigate ColoEDR in a realistic scenario. Given the theoretical results in the prior sections,
we know that ColoEDR is efficient for both the operator and tenants when the number of tenants is large, but that it may use
excessive on-site generation (in the worst case). Thus, two important issues to address in the case study are: How efficient is
the pricing mechanism in small markets, i.e., when N is small? What is the impact of the pricing mechanism on on-site generation
in realistic scenarios? Additionally, the case study allows us to better understand when it is feasible to obtain load shedding
from tenants, i.e., how flexible must tenants be in order to actively participate in a load shedding program?

Due to space constraints, we discuss only mandatory EDR in this section. The results in the case of voluntary EDR are
parallel and hence omitted for brevity.

6.1. Simulation settings

We use trace-based simulations in our case study. Our simulator takes the tenants’ workload trace and a trace of
mandatory EDR signals from Pennsylvania–New Jersey–Maryland Interconnection (PJM) [4] as its inputs. It then executes
ColoEDR (by emulating the bidding process and tenants’ energy reduction for EDR) at each timestamp of the EDR signal, and
outputs the resulting equilibrium. The settings we use for modeling the colocation data center and the tenant costs follow.
Colocation data center setup. We consider a colocation data center located in Ashburn, VA, which is a major data center
market served by PJM Interconnection. By default, there are three participating tenants interested in EDR, though we vary
the number of participating tenants during the experiments.

Each participating tenant has 2000 servers, and each server has an idle and peak power of 150Wand 250W, respectively.
The default PUE of the colo is set to 1.5 (typical for colo), and hence, whenever a tenant reduces 1 kWh energy, the corre-
sponding energy reduction at the colo level amounts to 1.5 kWh. Thus, the maximum possible power reduction is 2.25 MW
(i.e., 1.5 MW IT plus 0.75 MW non-IT). We assume that the colo operator counts the extra energy reduction at the colo level
as part of the tenants’ contributions, and rewards the tenants accordingly.

The colo has an on-site diesel generator, which has cost $0.3/kWh estimated based on typical fuel efficiency [36].
For setting the energy reduction target received by the colo, we follow the EDR signals issued by PJM Interconnection

from 5:00 am to 11:00 am on January 7, 2014, when many states in the eastern US experienced an extremely cold weather
and faced an electricity production shortage [37]. Fig. 1(b) shows the total energy reduction target set by PJM during that day
for all participating colos. In our simulation, we keep the shape of the energy reduction target but scale down the reduction
amount based on real power consumption in our considered colo.
Tenant workloads characteristics. We choose three representative types of workloads for participating tenants: tenant 1
is running high delay-sensitive workloads (e.g., user-facing web service), tenant 2 is running low delay-sensitive workloads
(e.g., enterprise’s internal services), and tenant 3 is running delay-tolerant workload (e.g., back-end processing).

The workload traces for the three participating tenants were collected from server utilization log of MSR [38], Wiki [39],
and Florida International University, respectively. Fig. 1(a) illustrates a snapshot of the traces of server cluster utilization
over 24 h, where the workloads are normalized with respect to each tenant’s maximum service capacity. For our evalu-
ation based on PJM EDR signals, we only use the traces from Hour 5–11 (i.e., 5:00 am–11:00 am). The illustrated results
use an average utilization for each tenant of 30%, consistent with reported values from real systems [9]. Our results are not
particularly sensitive to this choice.

There are various power management techniques, e.g., load migration/scheduling, that can be used for reducing tenants’
server energy. Here, as a concrete example, we consider that tenants dynamically consolidate workloads and turn on/off
servers for energy saving subject to SLA [40]. This power-saving technique has beenwidely studied [40,41] and also recently
applied in real systems (e.g., Facebook’s AutoScale [42]).

When tenants save energy for EDR by turning off some servers, their application performance might be affected. We
adopt a simple yet common model based on an M/G/1/Processor-Sharing queueing model, as follows. For a tenant with M
servers each with a service rate of µ, denote the workload arrival rate by λ. When m servers are shut down, we model the
total delay cost as c̄(m) = λ · β · T · delay(m) =

βT
1

νM −
1

M−m
, where ν =

λ
µM denotes the normalized workload arrival (i.e.,

utilization without turning off servers), T is the duration of an EDR event, and β is a cost parameter ($/time unit/job). In
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(a) Social cost. (b) Energy reduction. (c) Tenants’ net profits. (d) Operator’s total cost.

(e) Market clearing price. (f) Tenant 1’s utilization. (g) Tenant 2’s utilization. (h) Tenant 3’s utilization.

Fig. 2. Performance comparison under default settings. Throughout this and later plots, the bars in each cluster are the price-taking, price-anticipating,
socially optimal, and diesel only (if applicable) outcomes. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

our simulations, we set the cost parameter for tenant 1, tenant 2 and tenant 3 as 0.1, 0.03, 0.006, respectively, which are
already higher than those considered in the prior context of turning off servers for energy saving [40]. Note that we have
experimented with a variety of other models as well and the results do not qualitatively change.

We use a standard model for energy usage [9] and take the energy reduction s as linear in the number of servers shut
down, i.e., s = θ · m, where θ is a constant decided by server’s idle power and T . Then, it yields the following cost function
for a tenant’s energy reduction c(s) = c̄( s

θ
) − c̄(0), where c̄( · ) is defined in the above paragraph. Note that we have

experimented with a variety of other forms, and our results are not sensitive to the details of this cost function.
Finally, note that tenants typically have a delay performance requirement. Based on the above queueing model, this can

be translated as an utilization upper bound. Such a translation is also common in real systems (e.g., default policy for auto-
scaling virtual machines [43]). In our simulation, we capture the performance constraint by setting utilization upper bounds
for tenant 1, tenant 2, and tenant 3 as 0.5, 0.6, and 0.8, respectively.
Efficiency benchmarks. Throughout our experiments, we consider the price-taking, price-anticipating, and social optimal
outcomes. Additionally, we consider one other benchmark, diesel only, which is meant to capture common practice today
and to highlight that any tenant response extracted ‘‘greens’’ data center demand response. Under diesel only, the full EDR
response is provided by the on-site diesel generator. Throughout, our results are presented in grouped bar plots with the bars
representing (from left to right) the price-taking, price-anticipating, social optimal, and diesel only (if applicable) outcomes.

While othermechanisms (e.g., direct pricing [16], auction [35]) have been introduced in recent papers,we donot compare
ColoEDR with them here because ColoEDR is already typically indistinguishable from the social optimal cost.

6.2. Performance evaluation

We now discuss our main results, shown in Fig. 2.
Social cost. We first compare in Fig. 2(a) the social costs (4) incurred by different algorithms. Note that ColoEDR is close to
the social cost optimal under both price-taking and price-anticipating cases even though there are only three participating
tenants. Further, the resulting social costs in both the price-taking and price-anticipating scenarios are significantly lower
than that of the diesel only outcome. This shows a great potential of tenants’ IT power reduction for EDR, which is consistent
with the prior literature on owner-operated data center demand response [15,16,2].
Energy reduction contributions. Fig. 2(b) plots EDR energy reduction contributions from tenants and the diesel generator.
As expected from analytic results, both price-taking and price-anticipating tenants tend to contribute less to EDR (compared
to the social optimal) because of their self-interested decisions. In other words, given self-interested tenants, the colo op-
erator needs more diesel generation than the social optimal. Nonetheless, the difference is fairly small, much smaller than
predicted by the worst-case analytic results. This highlights that worst-case results were too pessimistic in this case. Of
course, one must remember that all tenant reduction extracted is in-place of diesel generation, and so serves to make the
demand response more environmentally friendly.
Benefits for tenants and colocation operator. We show in Fig. 2(c) and (d) that both the tenants and the colo operator can
benefit fromColoEDR. Specifically, Fig. 2(c) presents net profit (i.e., paymentmade by colo operatorminus performance cost)
received by tenants, showing that all participating tenants receive positive net rewards. While price-anticipating tenants



244 N. Chen et al. / Performance Evaluation 91 (2015) 229–254

(a) Social cost. (b) Market price. (c) Tenants’ net profits. (d) Operator’s total cost.

Fig. 3. Impact of number of tenants.

(a) Social cost. (b) Energy reduction. (c) Market price. (d) Tenants’ net profits.

Fig. 4. Impact of diesel price.

can receive higher net rewards than when they are price-taking, the extra reward gained is quite small. Similarly, Fig. 2(d)
shows cost saving for the colo operator, compared to the ‘‘diesel only’’ case.
Market clearing price. Fig. 2(e) shows the market clearing price. Naturally, when using ColoEDR to incentivize tenants
for EDR while minimizing the total cost, the colo operator will not pay the tenants at a price higher than its diesel price
(shown via the red horizontal line). We also note that the price under the price-anticipating case is higher than that under
the price-taking case, because the price-anticipating tenants are more strategic. However, the price difference between
price-anticipating and price-taking cases is quite small, which again confirms our analytic results.
Tenant’ server utilization. Tenants’ server utilizations are shown in Fig. 2(f)–(h), respectively. These illustrate that, while
tenants reduce energy for EDR, their server utilizations still stay within their respective limits (shown via the red horizontal
lines), satisfying performance constraints. This is because tenants typically provision their servers based on the maximum
possible workloads (plus a certainmargin), while in practice their workloads are usually quite low, resulting in a ‘‘slackness’’
that allows for saving energy while still meeting their performance requirements.

6.3. Sensitivity analysis

To complete our case study, we investigate the sensitivity of the conclusions discussed above to the settings used. For
each study, we only show results that are most significantly different than those in Fig. 2.
Impact of the number of tenants. First, we vary the number of participating tenants and show the results in Fig. 3. Tomake
results comparable, we fix the EDR energy reduction requirement as well as total number of servers: tenant 1, tenant 2
and tenant 3 are each equally split into multiple smaller tenants, each having fewer servers with the same workload arrival
rate scaled down accordingly. We then aggregate replicas of the same tenant together for an easy viewing in the figures,
e.g., ‘‘tenant 1’’ in the figures represent the whole group of tenants that are obtained by splitting the original tenant 1. One
interesting observation is that as more tenants participate in EDR, the market becomes more ‘‘competitive’’. Hence, each
individual tenant can only gain less net reward, but both the price and the aggregate net reward become higher (see Fig. 3(b)
and (c)). Motivated by this, one might suggest a possible trick: a tenant may gain more utility by splitting its servers and
pretending to be multiple tenants. In practice, however, each tenant has only one account (for billing, etc.) which requires
contracts and base fees, and thus pretending as multiple tenants is not viable in a colo.
Impact of the price of diesel. Fig. 4 illustrates how our result changes as the diesel price varies. Intuitively, as shown in
Fig. 4(a), the social cost (which includes diesel cost as a key component) increaseswith the diesel price.We see from Fig. 4(b)
and (c) that, when diesel price is very low (e.g., $0.1/kWh), the colo operator is willing to use more diesel and offers a lower
price to tenants. As a result, tenants contribute less to EDR. As the diesel price increases (e.g., from $0.2/kWh to $0.3/kWh),
the colo operator increases the market price (but still below the diesel price) to encourage tenants to cut more energy for
EDR. Nonetheless, tenants’ energy reduction contribution cannot increase arbitrarily due to their performance constraints.
Specifically, after the diesel price exceeds $0.4/kWh, tenants will not contribute more to EDR (i.e., almost all their IT energy
reduction capabilities have been exploited), even though the colo operator increases the reward. In this case, tenants simply
receive higher net rewards without further contributing to EDR, as shown in Fig. 4(d).
Impact of EDR requirement. Fig. 5 varies the EDR energy reduction target, with the maximum reduction ranging from 20%
to 120% of the colo’s peak IT power consumption. As the EDR energy reduction target increases, tenants’ energy reduction



N. Chen et al. / Performance Evaluation 91 (2015) 229–254 245

(a) Energy reduction. (b) Market price.

Fig. 5. Impact of EDR energy reduction target.

(a) Social cost. (b) Energy reduction. (c) Social cost. (d) Market price.

Fig. 6. Impact of tenants’ workloads and the workload prediction errors.

for EDR also increases; after a certain threshold, diesel generation becomes the main approach to EDR, while the increase
in tenant’s contribution is diminishing (even though the colo operator increases the market price), because of tenants’
performance requirements that limit their energy reduction capabilities.
Impact of tenants’ workloads. In Fig. 6(a)–(b), we vary the tenants’ workload intensity (measured in terms of the average
server utilization when all servers are active) from 10% to 50%, while still keeping the maximum utilization bounds to 50%,
60% and 80% as the performance requirements for the three tenants, respectively. While it is straightforward that when
tenants have more workloads, they tend to contribute less to EDR, because they need to keep more servers active to deliver
a good performance. Nonetheless, evenwhen their average utilizationwithout turning off servers is as high as 50% (which is
quite high in real systems, considering that the average utilization is only around 10%–30% [9]), tenants can still contribute
more than 20% of EDR energy reduction under ColoEDR, showing again the potential of IT power management for EDR.
Impact of workload prediction error. In practice, tenants may not perfectly estimate their own workload arrival rates. To
cope with possible traffic spikes, tenants can either keep more servers active as a backup or deliberately overestimate the
workload arrival rate by a certain overestimation factor. We choose the later approach in our simulation. Fig. 6(c)–(d) shows
the result under workload prediction errors. We see that both the social cost and market price are fairly robust against ten-
ants’ workload over-predictions. For example, the social cost increases by less than 10%, even when tenants overestimate
their workloads by 20% (which is already sufficiently high in practice, as shown in [41]). Other results (e.g., tenants’ net re-
ward, colo operator’s total cost) are also only minimally affected, thereby demonstrating the robustness of ColoEDR against
tenants’ workload over-predictions.

7. Related work

Our work contributes both to the growing literature on data center demand response, and to the literature studying
supply function equilibria. We discuss each in turn below.

Recently, data center demand response has received a growing amount of attention. A variety of approaches have been
considered, such as optimizing a grid operator’s pricing strategies for data centers [16] and tuning computing (e.g., server
control and scheduling) and/or non-computing knobs (e.g., cooling system) in data centers for various types of demand
response programs [15,44,13,14]. Field tests by LBNL also verify the practical feasibility of data center demand response
using a combination of existing power management techniques (e.g., load migration) [18]. These studies, however, have all
focused on large owner-operated data centers.

In contrast, to the best of our knowledge, colocation demand response has been investigated by only a few previous
works. The first is [34], which proposes a simplemechanism, called iCODE, to incentivize tenants’ load reduction. But, iCODE
is purely for voluntary EDR and does not include any energy reduction target (needed formandatory EDR).More importantly,
iCODE is designed without considering strategic behavior by tenants, and can be compromised by price-anticipating ten-
ants [34]. More relevant to the current work is [35], which proposes a VCG-type auctionmechanismwhere colo participates
in EDR programs.While themechanism is approximately truthful, it asks participating tenants to reveal their private cost in-
formation through complex bidding functions. Further, the colo operatormay be forced tomake arbitrarily high payments to
tenants. In contrast, our proposed solution provides a simple bidding space, protects tenants’ private valuation, and ensures
that the colo operator does not incur a higher cost for EDR than the case tenant contributions. Thus, unlike [35], ColoEDR
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benefits both colo operator and tenants, giving both parties incentives to cooperate for EDR. Further, ColoEDR is applicable
to both mandatory and voluntary EDR, both of which are important EDR programs [8].

Finally, it is important to note that our approach builds on, and adds to, the supply functionmechanism literature. Supply
function bidding (c.f. the seminal work by [45]) is frequently used in electricity markets due to its simple bidding language
and the avoidance of the unbounded payments typical in VCG-like mechanisms. Supply function bidding mechanisms
have been extensively studied, e.g., [24–27,33,46]. The literature primarily focuses on existence and computation of supply
function equilibrium, sometimes additionally proving bounds on efficiency loss. Our work is most related to [23], which
considers an inelastic demand δ that must be satisfied via extracting load shedding from consumers and proves efficient
bounds on supply function equilibrium. In contrast, our work assumes that the operator has an outside option (diesel) that
can be used to satisfy the inelastic demand. This leads to a multistage game between the tenants and the profit-maximizing
operator, a dynamic which has not been studied previously in the supply function literature.

8. Conclusion

In this paper, we focused on ‘‘greening’’ colocation demand response by designing a pricing mechanism that can extract
load reductions from tenants during EDR events. Our mechanism, ColoEDR, can be used in both mandatory and voluntary
EDR programs and is easy to put in place given systems available in colos today. The main technical contribution of the
work is the analysis of the ColoEDR mechanism, which is a supply function mechanism for an elastic demand, a setting
for which efficiency results have not previously been attained in the supply function literature. Our results highlight that
ColoEDRprovides provably near-optimal efficiency guarantees, bothwhen tenants are price-taking andwhen they are price-
anticipating. We also evaluate ColoEDR using trace-based simulation studies and validate that ColoEDR is not only ‘‘greens’’
multi-tenant EDR by reducing diesel generation, it also benefits the colo operator by reducing costs and the tenants by
providing payments for reductions.

Due to space constraints, we only include proofs of the results for themandatory EDR scenario. The analysis for voluntary
EDR is analogous to the mandatory case, though more complex. Full proofs for all the results can be found in the technical
report [47].

Appendix A. Price taking tenants

A.1. Proof of Proposition 1

When tenants are price takers, they maximize the payout Pn(bn, p) = pSn(bn, p) − cn(sn) over the bid bn. Note that
bn ∈ [0, pδ] as no tenant will bid beyond pδ otherwise the payout Pn < 0. Hence b = (b1, . . . , bn) is an equilibrium if and
only if the following condition is satisfied

∂−cn(sn)
∂sn

≤ p, 0 ≤ bn < pδ, (A.1a)

∂+cn(sn)
∂sn

≥ p, 0 < bn ≤ pδ. (A.1b)

At least one feasible solution to (9) exists because it isminimizing a continuous function over a compact set. Furthermore,
(9b)–(9c) satisfy standard constraint qualification, hence for the Lagrangian

L(s, µ) =


n

cn(sn) + µ


(δ − y) −


n

sn


,

there exists optimal primal dual pair (s, µ), such that (9b) and (9c) are satisfied, and

∂−cn(sn)
∂sn

≤ µ, sn > 0, (A.2a)

∂+cn(sn)
∂sn

≥ µ, sn ≥ 0. (A.2b)

Given the optimal (s, µ), let p = µ, and bn = p(δ − sn), then (9b) implies p satisfies (2), and (A.2a)–(A.2b) implies
(A.1a)–(A.1b), hence an equilibrium exists.

Conversely, if (b, p) is an equilibrium and p satisfies (2), the resulting allocation s is optimal to (9). To see this, if
0 ≤ sn < δ − y for all n, (A.1a)–(A.1b) is equivalent to (A.2a)–(A.2b) if we set µ = p, hence (s, µ) is primal dual optimal pair
for (9). If sn = (δ − y), then sm = 0, ∀m ≠ n. In this case, we set µ̄ = min{p, ∂+cn(sn)/∂sn}, and we can check that (s, µ̄) is
the primal dual optimal solution for (9).
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A.2. Proof of Theorem 3

By Proposition 1, when tenants are price-taking, for any y, the there is always an equilibrium, and the resulting s is always
the optimal allocation to provide (δ − y) energy reduction.

Hence we only need to verify that the on-site generation level y is the solution to (14a)–(14c). Similar to the proof of
Proposition 1, by Assumption 2, the first order optimality condition for the y in (14a)–(14c) is α

Nδ
(y + (N − 1)δ) = p. By

Proposition 1, p satisfies the relation (2), substitute the left-hand-side into (2) and solve for y, we have y =


n bnNδ

α
−

(N − 1)δ. This is exactly the on-site generation y that minimizes costo(b, y) given in (12). Hence the datacenter will always
pick y that is optimal for (14a)–(14c), together with Proposition 1, an equilibrium exists, and the resulting allocation (s, y)
is optimal for (14a)–(14c).

A.3. Proof of Proposition 4

Since y ≥ 0, it suffices to prove that whenever the optimal on-site generation is non-zero, y∗ > 0, yt ≥ y∗. From (4), the
Lagrangian of SCM is

L(s, y, µ∗, λ∗) =


n

cn(sn) + αy + µ∗


(δ − y) −


n

sn


− λ∗y.

By constraint qualification and the KKT conditions, assuming y∗ > 0, then λ = 0, µ∗
= α, hence the market clearing price

in the optimal allocation should be p∗
= α.

Next, consider the market price for price taking tenants. From (13),

pt =


i∈N

bti

(N − 1)δ + yt
=




i∈N

bti


α

Nδ
. (A.3)

The second equality yields


i∈N bti =
((N−1)δ+yt )2

Nδ
α. Substitute this back to (A.3),

pt =


i∈N

bti

(N − 1)δ + yt
=

(N − 1)δ + yt

Nδ
α. (A.4)

Note that yt ∈ [0, δ] and p∗
= α, thus (A.4) yields N−1

N p∗
≤ pt ≤ p∗.

Finally, from (14), the Lagrangian of the price-taking characterization optimization is,

L(s, y, µt , λt) =


n

cn(sn) +
α

2Nδ
(y + (N − 1)δ)2 + µt


(δ − y) −


n

sn


− λty.

By examining the KKT condition and using a similar argument to the proof of Proposition 1, we have pt = µt , also,
∂−cn(stn)

∂stn
≤ pt ≤ p∗

≤
∂+cn(s∗n)

∂s∗n
. Thus, ∀n, stn ≤ s∗n . Since y = δ −


sn, yt ≥ y∗.

A.4. Proof of Proposition 2

From the proof of Proposition 4, we see that when y∗ > 0, λ∗
= 0, and µ∗

= α. Furthermore, we have


n sn < δ, but
sn = δ −

bn
µ∗ . Hence (Nδ −


n bn
α

) < δ. Conversely, if (10) holds, then α(N − 1)δ <


n bn. But by Proposition 1 and (2), we
have


n bn = (p∗(N − 1)δ + y). By combining the two equations above: α(N − 1)δ < p∗((N − 1)δ + y∗). However, from

the proof in Proposition 1, we have p∗
≤ α, hence we must have y∗ > 0.

On the other hand, when the data center operator is profit maximizing, the cost to the operator costo(b, y) =
(


n bn)(δ−y)
(N−1)δ+y + αy is a convex function in y over the domain y ≥ 0. By first order condition, the cost is minimized when

y′
=

N δ

n
bn

α
− (N − 1)δ, (A.5)

then y = y′ if and only if y′
∈ [0, δ]. However,


n bn =


n p(δ − sn) = p((N − 1)δ + y) ≤ α(Nδ), where the last

inequality is because y ≤ δ, and p ≤ α, since operator always has the option to use on-site generation to get unit cost of
energy reduction at α. Hence we always have y′

≤ δ. So, if y > 0, by (A.5), (11) must hold, conversely, if (11) holds, then by
(A.5), y′ > 0, so operator will use y = y′.



248 N. Chen et al. / Performance Evaluation 91 (2015) 229–254

A.5. Proof of Theorem 5

Note that (s∗, y∗) is a feasible solution to (14). By Theorem 3, we have


n cn(s
t
n) +

α
2Nδ

(yt + (N − 1)δ)2 ≤


n cn(s
∗
n) +

α
2Nδ

(y∗
+ (N − 1)δ)2. Rearranging, we have
n

cn(stn) + αyt −


n

cn(s∗) + αy∗


≤

α

2Nδ
(yt − y∗)


2δ − (yt + y∗)


=

α

2Nδ
[−(yt − y∗)2 + 2(δ − y∗)(yt − y∗)]

≤
α

2Nδ
[−(yt − y∗

− (δ − y∗))2 + (δ − y∗)2]

=
α

2Nδ
(δ − y∗)2 ≤

αδ

2N
.

A.6. Proof of Theorem 6

From Proposition 4, we have N−1
N α ≤ pt ≤ p∗

= α, and 0 ≤ yt ≤ δ, which yields

cost∗o(p
∗, y∗) − costo(pt , yt) = p∗(δ − y∗) + αy∗

−

pt(δ − yt) + αyt


= (α − pt)(δ − yt).

Substituting the above bounds for pt and yt gives 0 ≤ cost∗o(p
∗, y∗) − costo(pt , yt) ≤

αδ
N .

Appendix B. Price-anticipating tenants

B.1. Proof of Theorem 7

The proof proceeds in a number of steps. We first show that the payoff function Qn is a concave and continuous function
for each firm n.We then establish necessary and sufficient conditions forb to be an equilibrium; these conditions look similar
to the optimality conditions (A.1a)–(A.1b) in the proof of Proposition 1, but for a ‘‘modified’’ cost function defined according
to (21). We then show the correspondence between these conditions and the optimality conditions for the problem (20a)–
(20c). This correspondence establishes existence of an equilibrium, and uniqueness of the resulting allocation.

Step 1: If b is an equilibrium, and Assumption 2 is satisfied, at least one coordinate of b is positive.
By Assumption 2, 0 < α <


n bn

(N−1)δ , hence at least one coordinate of b must be positive.
Step 2: The function Qn(b̄n; b−n) is concave and continuous in b̄n, for b̄n ≥ 0. From (16) and by plugging p(b) into sn in (1), we

have

Qn(b̄n; b−n) =




m≠n
bm + b̄n


αδ

N
− b̄n − cn

δ −
b̄n

m≠n
bm + b̄n


Nδ

α

 .

When


m≠n bm + b̄n > 0, the function b̄n/


m≠n bm + b̄n is a strictly concave function of b̄n (for b̄n ≥ 0). Since

cn is assumed to be convex and nondecreasing (and hence continuous), it follows that Qn(b̄n, b−n) is concave and
continuous in b̄n, for b̄n ≥ 0.

It is easy to show that for sn to be positive, we need bn ≤ bn where bn =
1
2


αδ
N +


αδ
N


αδ
N + 4


m≠n bm


.

Step 3: In an equilibrium, 0 ≤ bn ≤ bn, ∀n.
Tenant n would never bid more than b̄n given b−n. If bn > bn, then S(p(b), bn) = δ −

bn√
bn+


m≠n bm

Nδ
α

< 0. so the

payoff Qn(bn; b−n) becomes negative; on the other hand, Qn(bn; b−n) = 0.
We specify the following condition when marginal cost of production is not less than the price:

∀n,
∂−cn(sn)

∂sn
≤ p(b), sn > 0. (B.1)

This condition is satisfied when tenants are price-taking, in the next step, we show that (B.1) also holds in an
equilibrium outcome when tenants are price-anticipating.
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Step 4: The vector b is an equilibrium if and only if (B.1) is satisfied, at least one component of b is positive, and for each n,
bn ∈ [0, bn], and the following conditions hold:

if 0 < bn ≤ bn,
1
2


∂+cn(sn)

∂sn
+

α

2N


+

1
2


∂+cn(sn)

∂sn
−

α

2N

2

+
∂+cn(sn)

∂sn

2snα
Nδ

≥ p(b), (B.2a)

if 0 ≤ bn < bn,
1
2


∂−cn(sn)

∂sn
+

α

2N


+

1
2


∂−cn(sn)

∂sn
−

α

2N

2

+
∂−cn(sn)

∂sn

2snα
Nδ

≤ p(b). (B.2b)

By Step 2, Qn(bn; b−n) is concave and continuous for bn ≥ 0. By Step 3, bn ∈ [0, bn]. bn must maximize Qn(bn; b−n)

over 0 ≤ bn ≤ bn, and satisfy the following first order optimality conditions:

∂+Qn(bn; b−n)

∂bn
≤ 0, if 0 < bn ≤ bn;

∂−Qn(bn; b−n)

∂bn
≥ 0, if 0 ≤ bn < bn;

Recalling the expression for p(b) given in (13), and note that by (13) and (1), we have: 1√
m bm

=
1

p(b)


α
Nδ

, and
bn√
m bm

= (δ − sn)


α
Nδ

. Expanding the first order optimality conditions with (13) and simplify with the two

equations into the above, we have

1
2p(b)

α

N
− 1 +

∂−cn(sn)
∂sn

1
p(b)


1 −

1
2p(b)

α

N
δ − sn

δ


≤ 0. (B.3a)

1
2p(b)

α

N
− 1 +

∂+cn(sn)
∂sn

1
p(b)


1 −

1
2p(b)

α

N
δ − sn

δ


≥ 0. (B.3b)

To show (B.1) holds, we divide into two cases, when N ≥ 2, by rearranging (B.3a), we have

∂−cn(sn)
∂sn

1
p(b)

≤
2Np(b) − α

2Np(b) − α δ−sn
δ

≤ 1.

This is because by Assumption 2, 2Np(b)−α > 0 when N ≥ 2. Also, we have 2Np(b)−α δ−sn
δ

≥ 2Np(b)−α. Hence
(B.1) holds for N ≥ 2.
When N = 1, we can simplify (B.3a) further to

1
2p(b)

α − 1 +
∂−cn(sn)

∂sn

1
2p(b)

≤ 0, ⇒ p(b) ≥
1
2


α +

∂−cn(sn)
∂sn


≥

∂−cn(sn)
∂sn

.

The last inequality is because α ≥
∂−cn(sn)

∂sn
, otherwise p(b) > α, but profit maximizing operator will not pay for

price more than α, contradiction. Hence (B.1) must hold for all N . After multiplying through (B.3a)–(B.3b) by p(b)
and rearranging, we have two quadratic inequalities in terms of p(b). Solving the inequalities lead to two sets of
conditions of p(b) that satisfy the first order optimality conditions, they are:

if 0 ≤ bn < bn,
1
2


∂−cn(sn)

∂sn
+

α

2N


±

1
2


∂−cn(sn)

∂sn
−

α

2N

2

+ 4
∂−cn(sn)

∂sn

snα
2Nδ

≤ p(b) (B.4a)

if 0 < bn ≤ bn,
1
2


∂+cn(sn)

∂sn
+

α

2N


±

1
2


∂+cn(sn)

∂sn
−

α

2N

2

+ 4
∂+cn(sn)

∂sn

snα
2Nδ

≥ p(b) (B.4b)

However, only the conditions with plus sign satisfies (B.1), the conditions with minus sign violates (B.1) because
since

∀sn > 0, p(b) ≤
α

2N
≤

∂+cn(0)
∂sn

<
∂−cn(sn)

∂sn
.

Hence we discard the conditions with minus sign and note that (B.4b)–(B.4a) corresponds to (B.2a)–(B.2b).
Conversely, suppose that b has at least one strictly positive component, that 0 ≤ bn ≤ bn, and that b satisfies (B.1)
and (B.2a)–(B.2b). Then we may simply reverse the argument: by Step 2, Qn(bn; b−n) is concave and continuous in
bn ≥ 0, and in this case the conditions (B.2a)–(B.2b) imply that bn maximizes Qn(bn; b−n) over 0 ≤ bn ≤ bn. Since
we have already shown that choosing bn > bn is never optimal for firm n, we conclude that b is an equilibrium, and
it is easy to check that in this case condition (B.1) is satisfied.
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Step 5: If Assumption 2 holds, then the function ĉn(sn) defined in (21) is continuous, and strictly convex and strictly increasing
over sn ≥ 0, with ĉ(sn) = 0 for sn ≤ 0.
ĉn(sn) is continuous on sn > 0 by continuity of cn and on sn < 0 by definition. We only need to show that ĉn(0) = 0,
this is because when sn = 0, cn(sn) = 0, sn α

2N = 0, and integrating from 0 to sn is 0. Hence ĉn(sn) = 0 for sn ≤ 0.
For sn ≥ 0, we simply compute the directional derivatives of ĉn:

∂+ĉn(sn)
∂sn

=
1
2


α

2N
+

∂+cn(sn)
∂sn


+

1
2


α

2N
−

∂+cn(sn)
∂sn

2

+ 2
∂+cn(sn)

∂sn

snα
Nδ

,

∂−ĉn(sn)
∂sn

=
1
2


α

2N
+

∂−cn(sn)
∂sn


+

1
2


α

2N
−

∂+cn(sn)
∂sn

2

+ 2
∂+cn(sn)

∂sn

snα
Nδ

.

Since cn is strictly increasing and convex, for 0 ≤ sn < s̄n, we will have

0 ≤
∂+ĉ(sn)

∂sn
<

∂−ĉ(s̄n)
∂sn

≤
∂+ĉ(s̄n)

∂sn
.

This guarantees that ĉn is strictly increasing and strictly convex over sn ≥ 0.
Step 6: There exists a unique vector s ≥ 0, y ≥ 0 and at least one scalar ρ > 0 such that:

1
2


∂+cn(sn)

∂sn
+

α

2N


+

1
2


∂+cn(sn)

∂sn
−

α

2N

2

+
∂+cn(sn)

∂sn

2snα
Nδ

≥ ρ, if sn ≥ 0; (B.5a)

1
2


∂−cn(sn)

∂sn
+

α

2N


+

1
2


∂+cn(sn)

∂sn
−

α

2N

2

+
∂+cn(sn)

∂sn

2snα
Nδ

≤ ρ, if sn > 0; (B.5b)

α

Nδ
(y + (N − 1)δ) = ρ; (B.5c)

n

sn = (δ − y). (B.5d)

The vector s and y is then the unique optimal solution to (20a)–(20c).
By Step 5, since ĉn is continuous and strictly over the convex, compact feasible region for each n, we know that
(20a)–(20c) have a unique optimal solution s, y. As in the proof of Proposition 1, form the Lagrangian

L(s, y; ρ) =


n

ĉn(sn) +
α

2Nδ
(y + (N − 1)δ)2 + ρ


(δ − y) −


n

sn


.

By Assumption 2, y > 0, and by the fact that ĉn(sn) = 0 for sn ≤ 0, sn ≥ 0. there exists a Lagrange multiplier ρ such
that (s, y, ρ) satisfy the stationarity conditions which corresponds to (B.5a)–(B.5c) when we expand the definition
of ĉn(sn), together with the constraint (B.5d). The fact that ρ > 0 follows by (B.5c) as y > 0.

Step 7: If s ≥ 0, y ≥ 0 and ρ > 0 satisfy (B.5a)–(B.5d), then the triple (b, ρ, y) defined by bn = (δ − sn)ρ is an equilibrium as
defined in (17) and (18).
First observe that with this definition, together with (B.5d) and the fact that sn ≥ 0, we have bn ≥ 0 for all n.
Furthermore, we can show bn ≤ bn, since sn ≥ 0, bn ≤ ρδ, but by (B.5c)–(B.5d), we have

ρ =
α

Nδ
(y + (N − 1)δ) =

α

Nδ


Nδ −


n

sn


. (B.6)

Substitute the definition sn = δ −
bn
ρ

into (B.6), we have

ρ =
α

Nδ


n
bn

ρ
⇒ ρ =


n
bnα

Nδ
. (B.7)

Substituting (B.7) into bn ≤ ρδ, we have bn ≤


(


m≠n bm+bn)αδ

N , Solving this inequality we have bn ≤ bn.
Finally, at least one component of b is strictly positive, since otherwise we have sn1 = sn2 = δ for some n1 ≠ n2, in
which case


n sn > δ, which contradicts (B.5d). (or sn = δ, y = 0, contradicting our assumption that y > 0.)
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By Step 4, to check that b is an equilibrium, wemust only check the stationarity conditions (B.2a)–(B.2b). We simply
note that under the identification bn = ρ(δ − sn), using (B.7) and (B.5c), we have

y =


n
bnNδ

α
− (N − 1)δ; ρ =


n
bn

(N − 1)δ + y
= p(b).

Substitute p(b) into (B.5a) will correspond to (B.2a), and (B.5b) implies (B.2b) and (B.1) because ∂−cn(sn)
∂sn

≤
∂+cn(sn)

∂sn
.

Thus (b, ρ, y) is an equilibrium.
Step 8: If (b, p(b), y) is an equilibrium, then there exists a scalar ρ ≥ 0 such that the vector b defined by sn = S(p(b), bn)

satisfies (B.5a)–(B.5d).
We simply reverse the argument of Step 7. Since b is an equilibrium bids, by (18) and sn = S(p(b), bn), we have

n sn = (δ − y), i.e., (B.5d) is satisfied. By Step 4, b satisfies (B.2a)–(B.2b). Since y > 0 by Assumption 2, 0 ≤ sn < δ
for all n, let

ρ = max


p(b),

1
2


∂−cn(sn)

∂sn
+

α

2N


+

1
2


∂+cn(sn)

∂sn
−

α

2N

2

+
∂+cn(sn)

∂sn

2snα
Nδ


.

In this case ρ > 0 and 0 ≤ bn ≤ bn for all n, so (B.2b) implies (B.5b) by definition of ρ, and (B.5a) holds by (B.2a)
and the fact that ∂−cn(sn) ≤ ∂+cn(sn) (by convexity).

Step 9: There exists an equilibrium b, and for any equilibrium that price is greater than marginal cost, the vector s defined by
sn = S(p(b), bn) is the unique optimal solution of (B.5a)–(B.5d).
The conclusion is now straightforward. Existence follows from Steps 6 and 7. Uniqueness of the resulting production
vector s, and the fact that s is an optimal solution to (20a)–(20c), follows by Steps 6 and 8.

B.2. Proof of Lemma 8

We exploit the structure of the modified cost ĉn to prove the result. Note that, for all n, sn ≥ 0, if we define Gn(sn) = sn
0


( ∂+cn(z)

∂z −
α
2N )2 +

∂+cn(z)
∂z

2zα
Nδ

dz, then

Gn(sn) ≥

 sn

0


∂+cn(z)

∂z
−

α

2N

2

dz = cn(sn) − sn
α

2N
.

First inequality is because z ≥ 0, last equality is because by convexity and Assumption 3, we have ∂+cn(z)
∂z ≥

∂+cn(0)
∂sn

≥
α
2N .

Hence we have ĉn(sn) =
1
2


cn(sn) + sn α

2N


+

1
2Gn(sn) ≥ cn(sn). On the other hand, notice that sn ≤ δ, we have:

Gn(sn) ≤

 sn

0


∂+cn(z)

∂z
−

α

2N

2

+
∂+cn(z)

∂z
2δα
Nδ

dz

=

 sn

0


∂+cn(z)

∂z
+

α

2N

2

dz = cn(sn) + sn
α

2N
.

Hence we have ĉn(sn) =
1
2


cn(sn) + sn α

2N


+

1
2Gn(sn) ≤ cn(sn) + sn α

2N . The bounds for the left and right derivatives can be
obtained from taking the left (or right) derivatives at the bounds of Gn(sn).

B.3. Proof of Theorem 9

Firstly we will prove one side of the inequality pt ≤ pa, yt ≤ ya. Recall that by examining the Lagrangians of the
optimizations in Proposition 4 in and Theorem 7, we have pt ≥ ∂−cn(stn)/∂sn, pt ≤ ∂+cn(stn)/∂sn, pa ≥ ∂−ĉn(san)/∂sn, pa ≤

∂+ĉn(san)/∂sn, at the domainwhere the left or right derivative is defined, and pt =
α
Nδ

(yt +(N−1)δ), pa =
α
Nδ

(ya+(N−1)δ).
If yt > ya, then pt > pa. Also, because the total energy reduction δ is constant, we have


n s

t
n <


n s

a
n.

Hence there exist sr > 0 such that sar > str for some r ∈ {1, . . . ,N}. Therefore, by strict convexity of cn (Assumption 1):

pt ≤
∂+cr(str)

∂sr
<

∂−cr(sar )
∂sr

. (B.8)

However, by Lemma 8 we have ∂− ĉr (sr )
∂sr

≥
∂−cr (sr )

∂sr
. Hence, we have

pa ≥
∂−ĉr(sar )

∂sr
≥

∂−cr(sar )
∂sr

. (B.9)
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Combining (B.8) and (B.9), we have pt < pa, contradiction. Hence we have yt ≤ ya, and pt ≤ pa.
Next we show the other side of the inequality pa ≤ pt +

α
2N , ya ≤ yt +

δ
2 , by the previous part, we have


n s

a
n ≤


n s

t
n.

Let n = argmaxm(stm − sam), clearly stn ≥ san, otherwise


n s
t
n <


n s

a
n, contradiction.

If stn = san, then ∀m, stm = sam, and yt = ya, then pt = pa.

If stn > san, then by strict convexity of cn (Assumption 1), and the fact that san ≥ 0, stn > 0, we have ∂+ ĉn(san)
sn

<
∂−cn(stn)

sn
≤ pt .

Also, by Lemma 8, we have ∂+ ĉn(sn)
∂sn

≤
∂+cn(sn)

∂sn
+

α
2N , this gives us p

a
≤

∂+ ĉn(san)
∂sn

≤
∂+cn(san)

∂sn
+

α
2N . Combining the two previous

inequalities about pt and pa, we have pa < pt +
α
2N . Hence we have

α

Nδ
(ya + (N − 1)δ) <

α

Nδ
(yt + (N − 1)δ) +

α

2N
⇒ ya < yt +

δ

2
.

B.4. Proof of Theorem 11

As (s∗, y∗) is a feasible solution to (20), by Theorem 7, we have
n

ĉn(san) +
α

2Nδ
(ya + (N − 1)δ)2 ≤


n

ĉn(s∗n) +
α

2Nδ
(y∗

+ (N − 1)δ)2. (B.10)

Rearranging, we have


n ĉn(s
a
n) + αya −


n ĉn(s

∗
n) + αy∗


≤

α
N


(ya − y∗)(1 −

ya+y∗

2δ )

. By Corollary 10 and the fact that

y∗
≤ δ, ya ≤ δ, both terms in the brackets are positive, hence right-hand-side expression is maximized when y∗

→ 0+ and
ya = δ, hence

n

ĉn(san) + αya


−


n

ĉn(s∗n) + αy∗


≤

αδ

2N
. (B.11)

However, by Lemma 8, we have


n ĉn(s
∗
n) ≤


n cn(s

∗
n) +

α
2N (


n sn) ≤


n cn(s
∗
n) +

αδ
2N ; and


n ĉn(s

a
n) ≥


n cn(s

a
n).

Substituting the above relations into (B.11) and rearranging, we have the desired result.

B.5. Proof of Theorem 12

First, we compare the cost by operator between the price-taking and price anticipating cases, by definition (15) and
rearranging, we have costo(pa, ya) − costo(pt , yt) = (pa − pt)


δ − yt


+ (α − pa) (ya − yt). By the fact that pa =

α
Nδ

(ya + (N − 1)δ) (shown in Theorem 9) and the fact that 0 ≤ ya ≤ δ, we have

α


N − 1
N


≤ pa ≤ α. (B.12)

By the upper bound of pa in (B.12) and the upper bounds of pt , yt in Theorem 9, we have

costo(pa, ya) − costo(pt , yt) ≥ 0. (B.13)

Similarly, using the lower bound of pa in (B.12) and the upper bounds of pa, ya in Theorem 9, we have

costo(pa, ya) − costo(pt , yt) ≤

 α

2N


· (δ) +


α ·

1
N


δ

2


=

αδ

N
.

Second, we compare the cost by the operator to the social optimal. Since the energy reduction goal δ is the same, by
Proposition 4 and Corollary 10, we have pt ≤ p∗ and pa ≤ p∗. Hence we have costo(pt , yt) ≤ costo(pa, ya) ≤ costo(p∗, y∗).
Furthermore,

costo(p∗, y∗) − costo(pt , yt) = αδ − (pt(δ − yt) + αyt)

= (α − pt)(δ − yt) = α


δ − yt

Nδ


(δ − yt) ≤

αδ

N
. (B.14)

Lastly by (B.13) and (B.14), we have cost(p∗, y∗) − cost(pa, ya) ≤ cost(p∗, y∗) − cost(pt , yt) ≤
αδ
N .
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B.6. Proof of Theorem 13

Given any ε > 0, let ε′
=

1
2ε. Consider the following set of cost function:

c1(s1) =


α

2N
s1, if s1 < ε′

;

α


1 −

3ε′

2Nδ


s1 + C1, ε′

≤ s1 ≤ δ − ε′
;

2αs1 + C2, s1 > δ − ε′

where C1, C2 are constants that make c1 continuous,6 then c1 is piece-wise linear and convex. Also, ∀m ≠ 1, cm(sm) = 2αsm.
It is easy to see that s∗1 = δ − ε′ and y∗

= ε′ is the optimal allocation.
Let sa1 = ε′, ya = δ − ε′, and ∀m ≠ 1, sam = 0, we claim that (sa, ya) is the unique optimal solution to (20a)–(20c). To see

this, let ρ = α(1 − ε/(Nδ)), then,

α

Nδ
(ya + (N − 1)δ) = ρ;


n

san = δ − ya; (B.15a)

∂−ĉ1(sa1)
∂s1

≤ ρ;
∂+ĉ1(sa1)

∂s1
≥ ρ;

∂+ĉm(0)
∂sm

≥ ρ, ∀m ≠ 1. (B.15b)

where the second inequality is because if we let Hn be the term under square root for ∂+ ĉn(sn)
∂sn

, then

Hn =


∂+cn(sn)

∂sn
−

 α

2N
−

α

N
sn
δ

2

+


α2

N2

(δ + sn)(δ − sn)
δ2


≥

∂+cn(sn)
∂sn

−

 α

2N
−

α

N
sn
δ


.

Note that ∂+ ĉn(sn)
∂sn

=
1
2 (

∂+cn(sn)
∂sn

+
α
2N ) +

1
2Hn. Hence we have ∂+ ĉ1(sa1)

∂s1
≥

∂+c1(sa1)
∂s1

+
αs1
2Nδ

= ρ. These conditions correspond to
(B.5a)–(B.5d), so we conclude that (sa, ya) is the unique optimal solution to (20a)–(20c). Hence ya − y∗

= δ − 2ε′
= δ − ε.
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