
16

Online Optimization in Cloud Resource Provisioning:
Predictions, Regrets, and Algorithms

JOSHUA COMDEN, Stony Brook University, USA

SIJIE YAO, Stony Brook University, USA

NIANGJUN CHEN, Institute of High Performance Computing, Singapore

HAIPENG XING, Stony Brook University, USA

ZHENHUA LIU∗, Stony Brook University, USA

Due to mainstream adoption of cloud computing and its rapidly increasing usage of energy, the efficient

management of cloud computing resources has become an important issue. A key challenge in managing the

resources lies in the volatility of their demand. While there have been a wide variety of online algorithms

(e.g. Receding Horizon Control, Online Balanced Descent) designed, it is hard for cloud operators to pick the

right algorithm. In particular, these algorithms vary greatly on their usage of predictions and performance

guarantees. This paper aims at studying an automatic algorithm selection scheme in real time. To do this, we

empirically study the prediction errors from real-world cloud computing traces. Results show that prediction

errors are distinct from different prediction algorithms, across virtual machines, and over the time horizon.

Based on these observations, we propose a simple prediction error model and prove upper bounds on the

dynamic regret of several online algorithms. We then apply the empirical and theoretical results to create a

simple online meta-algorithm that chooses the best algorithm on the fly. Numerical simulations demonstrate

that the performance of the designed policy is close to that of the best algorithm in hindsight.

CCS Concepts: • Social and professional topics → Computing equipment management; • Theory of
computation → Online learning algorithms; Regret bounds; • Computer systems organization →

Cloud computing.

Additional Key Words and Phrases: online optimization; meta-algorithms; resource allocation

ACM Reference Format:
Joshua Comden, Sijie Yao, Niangjun Chen, Haipeng Xing, and Zhenhua Liu. 2019. Online Optimization in

Cloud Resource Provisioning: Predictions, Regrets, and Algorithms. Proc. ACM Meas. Anal. Comput. Syst. 3, 1,
Article 16 (March 2019), 30 pages. https://doi.org/10.1145/3311087

∗
Corresponding Author

Authors’ addresses: Joshua Comden, Stony Brook University, Department of Applied Mathematics & Statistics, 100 Nicolls

Road, Stony Brook, NY, 11794, USA, joshua.comden@stonybrook.edu; Sijie Yao, Stony Brook University, Department of

Applied Mathematics & Statistics, 100 Nicolls Road, Stony Brook, NY, 11794, USA, sijie.yao@stonybrook.edu; Niangjun

Chen, Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis North, 138632, Singapore, chennj@

ihpc.a-star.edu.sg; Haipeng Xing, Stony Brook University, Department of Applied Mathematics & Statistics, 100 Nicolls

Road, Stony Brook, NY, 11794, USA, haipeng.xing@stonybrook.edu; Zhenhua Liu, Stony Brook University, Department of

Applied Mathematics & Statistics, 100 Nicolls Road, Stony Brook, NY, 11794, USA, zhenhua.liu@stonybrook.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/3-ART16 $15.00

https://doi.org/10.1145/3311087

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

https://doi.org/10.1145/3311087
https://doi.org/10.1145/3311087

16:2 J. Comden et al.

1 INTRODUCTION
The usage of cloud services has been increasing rapidly in the past decade and shows no signs of

stopping. In fact, from 2012 to 2015 it represented 70% of the IT industry’s revenue growth and is

expected to still be 60% in 2020 [14]. One of the main reasons for an enterprise to make the decision

to move from local IT hosting to the cloud is the ability to quickly scale up IT resources without

large up-front costs and avoid the over-provisioning costs that come with building excess capacity

[7]. However, this essentially transfers the IT resource provisioning problem from the enterprise to

the cloud service provider. Therefore, providing and provisioning IT resources in a cost effective

manner are major components of the cloud business model.

There are different types of costs that a cloud provider incurs in provisioning resources which

have different characteristics. Operational costs come in the form of having a direct dependency on

the amount of resources provided which include electricity and cooling costs, amortized hardware,

and service level agreement violation penalties. Whereas, switching costs depend on the changes

in provisioning decisions such as extra wear and tear on the hardware and startup/shutdown

delay costs [38]. The inclusion of switching costs into resource provisioning decisions couples the

decisions in time which means that control methods should be looking into the future well beyond

the next decision.

Several different control methods are used in practice or have been proposed to cost-effectively

provision IT resources. There are methods that do not use future information but instead build

realistic models to make smart threshold triggered provisioning decisions [8, 34, 40] or employ gra-

dient descent techniques [47, 53]. On the other extreme, other methods rely heavily on predictions

of the future with variants on model predictive control [2, 5, 6, 33, 36, 44, 49, 50].

Due to the dependency of many control methods on having accurate predictions of the future

to make good provisioning decisions, there has been a great deal of literature on prediction

workload demand. Prediction models include Exponential Smoothing [30, 41], Markov chains [28],

AutoRegressive [35], AutoRegressive Moving Average [34, 44], Holt-Winter [24], Naive Bayes [43],

Neural Network [31], and Pattern Matching [16].

However, even with all of this literature on workload predictions and their utilization in control

algorithms, the understanding of prediction error and how to handle it remains an important open

issue and research challenge [1]. In this paper we aim to mend this gap by making the following

contributions:

(1) Prediction error is modeled to aid in proving worst-case dynamic regret bounds for control

algorithms. The model is simple, intuitive, and represents error in terms of the extra control

cost from prediction inaccuracies. This allows prediction models to be compared and chosen

based on potential control loss. (Section 3)

(2) Upper bounds on dynamic regret are proven for a variety of algorithms in terms of the

prediction error model. In order to choose which algorithm to run without prediction error

knowledge, a simple online meta-algorithm is designed to carefully select which algorithm

to follow based on past performance. (Section 4)

(3) A detailed analysis of prediction accuracy is done for cloud computing by fitting real-world

CPU utilization traces of Azure virtual machines to popular prediction models. We demon-

strate that there is a large spectrum of prediction accuracy among virtual machines. (Section

5)

(4) Using real-world trace based simulations of CPU allocation for virtual machines, the proposed

meta-algorithm is shown to outperform a popular algorithm selection policy and perform

very closely to that of the best algorithm chosen in hindsight. (Section 6)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:3

2 RELATEDWORK
In order to make theoretical guarantees on cloud resource provisioning problems that include

switching costs which couple the decisions in time, [36–38] abstracted the problem into a general

framework called Smoothed Online Convex Optimization (SOCO). These switching costs are assumed

to satisfy the triangle inequality and give a smoothing effect between consecutive actions. In the

Metrical Task Systems (MTS) [11–13] community they are known as the transition costs. In regards

to having no predictions of the future, [3] proved that it is impossible to design an algorithm

for SOCO that has both sublinear regret and a constant-competitive ratio. When predictions are

available, Model Predictive Control (MPC) [27] also called Receding Horizon Control (RHC) from

the control theory community was first thought as an excellent candidate algorithm to be used for

SOCO since it uses the most up-to-date predictions when making the next decision. However, [36]

proved that the competitive ratio of RHC applied to SOCO, although constant, does not improve

with an increased number of predictions. This result is true even if the predictions have no error

and increases as the switching cost increases. Unfortunately this means that even if RHC may

be performing well, it could unexpectedly perform poorly. In response to the poor worst-case

guarantees of RHC, [36] proposed a different algorithm called Averaging Fixed Horizon Control

(AFHC) that incorporates out-dated and the most up-to-date predictions in making the next decision.

This unintuitive approach makes AFHC less susceptible to changing actions too quickly when

given new predictions which gives it a competitive ratio that decreases as the number of perfect

predictions increases. For imperfect predictions with noisy errors, [17] showed that AFHC applied

to online LASSO has a constant average-case competitive ratio and an average-case regret that

is sublinear in the number of rounds. [18] generalized RHC and AFHC to an algorithm called

Committed Horizon Control (CHC) and proved an upper bound on the competitive difference

which is linear in terms of the time horizon and includes prediction errors.

One of the inspirations for our prediction error model came from that of Besbes et al. [9] where

they used a variation budget to limit how much an adversary could change the environment

from its current state. For their work, they also designed a meta-algorithm but it was based on

partitioning the time horizon into batches and running an Online Convex Optimization algorithm

with static regret guarantees to achieve dynamic regret guarantees. However, our main focus was

on designing a meta-algorithm that could work with unknown prediction capabilities regardless

of environmental conditions whereas they were focused on dealing with an environment that is

non-stationary regardless of predictability.

3 PROBLEM FORMULATION
3.1 Model
Suppose that a cloud service provider needs to continually provision resources tomeet a dynamically

changing demand from its subscribers in an online manner over a time horizon T . At timeslot

t ∈ {1, . . . ,T }, applications of a cloud service subscriber have requests on different resources like

network, CPU, or memory. Letyt ∈ Rn be the vector of demands at timeslot t where each dimension

represents a type of resource requested; let xt ∈ X be the vector of resources provisioned in the

constrained provisioning action space X ⊂ Rm .
Note this model is general enough for services provided by geographically distributed resources,

e.g, datacenters, where each dimension in yt and xt corresponds to the demand and supply of a

resource at a given location. It can also be applied to an ensemble of virtual machines where each

dimension in xt corresponds to the supply of a resource for a particular individual virtual machine

and each dimension in yt corresponds to a total demand for a particular resource that must be

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:4 J. Comden et al.

supplied among the ensemble. Cross-correlation among the elements of yt in time can be used to

represent the correlated demand among resources.

In provisioning xt , the provider experiences two types of costs: (i) operational costs and (ii)

switching costs.

Operational costs: such as the monetary cost of reserving and using virtual machines, amortized

capital costs and energy expenditure to run local resources, as well as delay cost (revenue loss,

penalty for SLA violations) when resources are under-provisioned. We model these costs by a

convex function f (xt ,yt) of the demand and the provisioned resources. Through the vector yt ,
the form of the function is general enough to capture a wide range of parameterized cost models

for server power consumption, e.g., [4, 26, 51] as well as latency, e.g., [20, 36, 45]. For example

in speed scaling, [51] uses the convex operational cost form cx
γ
t +

yt
xt−yt for a M/GI/1 Processor

Sharing queue where the scalar yt is the processing load demand and the scalar xt is the speed
at which the processors are running. The first term represents the nonlinear function of speed

on the average power consumption with the parameter γ > 1, while the second term represents

the average response time. The parameter c balances the cost between power consumption and

average response time.

Switching costs: such as wear and tear and delay from startup and shutdown of servers, as well

as cost due to virtual machine migration and data transfer. Depending on the type of resource and

risk aversion of the service provider, the cost of changing resource allocations can be equivalent to

running them continually for a few minutes to several hours [10, 21, 48]. We model these costs

with a general norm of the difference in the consecutive provisioning decisions α ∥xt − xt−1∥ where
α represents the unit cost of change decisions.

The following optimization problem brings together these costs along with the actions that the

cloud service provider needs to decide for minimizing cost:

min

{x1, ...,xT }∈X

T∑
t=1

(f (xt ,yt) + α ∥xt − xt−1∥) (1)

where x0 is the given starting point. Let the optimal solution be denoted as

(
x∗
1
, . . . ,x∗T

)
.

We make the mild assumption that the action space X is compact and convex and we define

the diameter D of the action space such that ∥x1 − x2∥ ≤ D : ∀{x1,x2} ∈ X. This is motivated

by the fact that cloud resources have capacity constraints. Additionally, we assume that f (x ,y) is
G-Lipschitz continuous for any given demand y with respect to its provisioning decision x :

| f (x1,y) − f (x2,y)| ≤ G∥x1 − x2∥2 ∀{x1,x2} ∈ X,∀y (2)

which allows for the case when f (x ,y) is nondifferentiable.

3.2 Online Optimization
If the cloud service provider knows all of the demandsy1, . . . ,yT at the beginning, problem (1) can be

solved efficiently. However, since the cloud service provider cannot know all demands beforehand,

there is insufficient information to solve this optimization problem. Instead, the provider must

solve an online version of the problem with the goal of approximating the optimal solution to the

original Problem (1).

In practice, the cloud service provider tackles the lack of future information bymaking predictions

on future demands. Denote ŷt |τ as the prediction of yt using information up to τ − 1 for τ ≤ t .
Assuming a prediction window ofw steps ahead, we can model the decisions and information flow

of the cloud service provider in the following manner. At each timeslot t ∈ {1, . . . ,T }:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:5

(1) The cloud service provider predicts the future demands ŷt |t ,. . . ,ŷt+w−1 |t and makes an alloca-

tion decision xt ∈ X.

(2) Subsequently, the true demand yt is revealed and the cloud service provider incur the cost

f (xt ,yt) + α ∥xt − xt−1∥.
The cost of a particular online algorithm A under the sequence of resource demands y1:T :=

(y1, . . . ,yT) is therefore:

cost(A,y1:T) =
T∑
t=1

(
f

(
xA
t ,yt

)
+ α

xA
t − xA

t−1
) . (3)

where xA
0
= x0 is assumed.

To compare an online algorithm’s performance to that of the offline optimal solution, we employ

the worst-case performance metric dynamic regret constrained by the path length of the optimal

solution.

Definition 1. We define the L-constrained dynamic regret of online algorithm A to be:

RA
T (L) := sup

y1:T
{cost(A,y1:T) − cost(OPTL,y1:T)} (4)

where OPTL is the optimal solution of (1) with respect to an additional constraint on its path-length:
T∑
t=1

∥x∗t − x∗t−1∥ ≤ L. (5)

Note that by varying the value of L, Definition 1 smoothly interpolates between the notion of

static regret [54] where L = 0 and the unconstrained dynamic regret [29, 32] widely studied in

online convex optimization where L = ∞.

3.3 Prediction Error Model
Predictions are crucial to online decision making. However, the main challenge with incorporating

realistic predictions into the analysis of online algorithms is the difficulty in quantifying the impact

of prediction errors on an online algorithm’s performance. Most design and analysis to date avoid

this issue altogether in two ways. (i) They optimistically assume simple prediction errors such

as a finite prediction window that contains perfect predictions [36, 38, 52] and more recent work

with probabilistic prediction models which provides theoretical bounds on expected competitive

performance [17, 18]. (ii) They pessimistically assume that no trustworthy predictions are available

[29, 32, 46, 54]. This is similar to imposing no restrictions on the prediction errors where an

adversary can make the predictions useless by always giving the decision maker completely wrong

information. In this case, the online algorithm can only ignore predictions and decide the action

solely based on past information.

However, predictions in cloud computing are neither perfect nor useless. As will be shown in

Section 5, predictions can vary from being almost perfect to extremely inaccurate. As a result, the

current dichotomy of analyzing algorithms based on either perfect or adversarial predictions tells

us little about which algorithm(s) should be used in which environments.

To understand how to choose online algorithms under realistic predictions, we introduce a simple

prediction error model that connects prediction errors to the potential performance loss. This is

done by restricting the adversary’s power in deciding how poor the predictions can be in terms of

possible performance loss. Essentially, the adversary is given a budget BT of error in the form of

performance loss to allocate among the timeslots {1, . . . ,T } any way it chooses.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:6 J. Comden et al.

Specifically, recall that ŷt |t denotes the prediction of yt at the beginning of time t before it is
observed.

Definition 2. The sequence of true demands and the corresponding predictions (y1, ŷ1 |1), . . . ,
(yT , ŷT |T) satisfy a prediction budget of BT if

T∑
t=1

sup

x ∈X

��f (x ,yt) − f (x , ŷt |t)
�� ≤ BT (6)

This definition gives a deterministic upper bound on the loss in operation cost due to prediction

errors, and is also flexible enough to allow adversarial allocations of errors over time. See Theorem

3 in Section 4 which demonstrates the direct impact errors in the form of a budget has on the

performance upper bound of an online algorithm.

The prediction error model can be further extended to include multiple steps of prediction with

error budgets. Specifically,

Definition 3. The sequence of true demands and their k-step ahead predictions (yk , ŷk |1), . . . ,
(yT , ŷT |T−k+1) satisfy a k-step prediction budget Bk,T if

T∑
t=k

sup

x ∈X

��f (x ,yt) − f (x , ŷt |t−k+1)
�� ≤ Bk,T . (7)

To quantify online algorithms leveraging predictions up tow steps, let Y1:w,T denote the set of

sequences of true demands and their various k-step predictions that satisfy (7) for all k ∈ {1, . . . ,w}.
Using the multi-step prediction error model, the dynamic regret can be further restricted to include

the error budget in its definition.

Definition 4. We define the L-constrained dynamic regret of online algorithm A with prediction
error budgets B1,T , . . . ,Bw,T to be:

RA
T (B1:w,T ,L) := sup

y∈Y1:w,T

{cost(A,y1:T) − cost(OPTL,y1:T)} . (8)

Here y is a specific instance inY1:w,T and L is the upper bound constraint on the dynamic offline

optimal OPTL solution’s path length as defined by Equation (5). Like the single step prediction

error budget, the multi-step prediction error budget can be used to prove upper bounds on dynamic

regret for online algorithms which utilize multiple steps of prediction (See Theorem 4 in Section 4).

4 ONLINE ALGORITHMS
There exist many online algorithms which can be categorized by how much prediction they utilize.

We state several of them and prove their dynamic regret upper bounds in the presence of prediction

errors using the prediction error budget model. Afterwards, we give a simple yet practical online

meta-algorithm to choose which algorithm to implement based on past performance.

4.1 No Predictions
A very popular algorithm is Online Gradient Descent (OGD) which chooses its next action by

moving from the current action along the descent direction, i.e., the opposite direction of the

gradient in the current step [54]. It is computationally easy and requires no memory since the only

input to its decision comes from the previous timeslot.

The projected version of OGD is formally stated in Algorithm 1 where дt−1 is a (sub)gradient,
PX(·) is the euclidean projection operator onto the action space X and η is the stepsize which

determines how aggressively OGD moves along the descent direction.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:7

Algorithm 1 Online Gradient Descent (OGD)

1: for t = 1, . . . ,T do
2: Return xt = PX(xt−1 − ηдt−1).
3: end for

Recall L is the largest path-length allowed for the optimal solution, i.e.,

∑T
t=1 ∥x∗t −x∗t−1∥ ≤ L. An

upper bound on OGD’s dynamic regret is stated in the following theorem for any given constant

stepsize η.

Theorem 1. OGD has the following upper bound on dynamic regret:

ROGD
T (L) ≤ 2D2κ2

η
+ L

(
Dκ

η
− α

)+
+ ηG

(
G

2

+
α

κ

)
T (9)

where κ and κ are positive constants such that κ∥x ∥ ≤ ∥x ∥2 ≤ κ∥x ∥, and (x)+ := max{0,x}.

See Appendix A.1 for the proof.

The bound in Theorem 1 seems like on the order of O(T). However, if we pick η by minimizing

the RHS of (9), an O(
√
LT) upper bound on dynamic regret can be obtained.

Corollary 2. If the stepsize η is set to
√

Dκ(2Dκ+L)
G

(
G
2
+ ακ

)
T
, then OGD has the following upper bound on

dynamic regret:

ROGD
T (L) ≤ 2

√
Dκ(2Dκ + L)G

(
G

2

+
α

κ

)
T . (10)

Proof. Plugging η =
√

Dκ(2Dκ+L)
G

(
G
2
+ ακ

)
T

into Theorem 1 and noting that
Dκ
η ≥

(
Dκ
η − α

)+
gets the

resultant after simplifying the terms. �

As simple and straightforward as OGD is, if the optimal path length L grows sublinearly with

the time horizon T , OGD achieves a sublinear dynamic regret. See Section 6 for examples of this

scenario. Clearly, if L is linear in T , the dynamic regret of OGD is linear. Since it does not make use

of any future information, incorporating predictions should intuitively help.

4.2 Utilizing Single-step Predictions
With single-step predictions, we have a better, albeit imperfect, idea of what situation to expect this

coming timeslot. One way to make use of this one step of prediction is Online Balanced Descent

(OBD) recently introduced by Chen et al in 2018 [19]. The main idea of OBD is to project onto an

appropriate sublevel set of the current predicted cost f (x , ŷt). The sublevel set is chosen so that

the operating cost and the switching cost are balanced. The details are stated in Algorithm 2.

Algorithm 2 Online Balanced Descent (OBD)

1: for t = 1, . . . ,T do
2: Define x(l) = PΦ

Kl
(xt−1), increase l from l = ft (vt), until ∥∇Φ(x(l)) − ∇Φ(xt−1)∥∗ =

η ∥∇ft (x(l))∥∗.
3: Return xt = x(l).
4: end for

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:8 J. Comden et al.

At time t , let Kl be the l-sublevel set of ft (x , ŷt) that is feasible, i.e. Kl = {x ∈ X| ft (x , ŷt) ≤ l}.
Also, let Φ be anm-strongly convex function in terms of the norm ∥ · ∥ defined by the switching

cost. For example, if the switching cost is defined by the L2 norm, we can pick Φ(x) = 1

2
∥x ∥2. Define

the projection operator onto the sublevel set with respect to Φ as

PΦ
Kl (x) = arg min

z∈Kl
DΦ(x , z),

where DΦ(x ,y) = Φ(x) − Φ(y) − ⟨∇Φ(y),x −y⟩ is the Bregman divergence induced by Φ. Since Φ is

m-strongly convex in ∥ · ∥, D(x ,y) ≥ m
2
∥x − y∥2.

With the prediction error budget BT of the true demand and its one-step predictions sequence

(y1, ŷ1 |1), . . . , (yT , ŷT |T), we can bound the dynamic regret of OBD as the following:

Theorem 3. OBD has the following upper bound on dynamic regret given one-step noisy predictions
with error budget BT :

ROBD
T (BT ,L) ≤ 2BT + α

√
2GLT

m
. (11)

See Appendix A.2 for the proof, we can see that, when both the prediction error budget BT and

the path-length L is sublinear, then OBD with one step prediction has sublinear dynamic regret.

4.3 Utilizing Multi-step Predictions
The most straightforward way to use predictions that look multiple steps ahead is to optimize the

next action as if the predictions were true. This is the main intuition behind Receding Horizon

Control (RHC) which has a long rich history of both theoretical and practical significance [15, 27, 42].

Specifically, suppose that there are predictions available up to w steps ahead starting from

timeslot t . RHC uses them as input to the following optimization problem which is an estimation

of its cost for the nextw timeslots:

min

{xt , ...,xt+w−1 }∈X

t+w−1∑
τ=t

(
f (xτ , ŷτ |t) + α ∥xτ − xτ−1∥

)
. (12)

Define X (xt−1, ŷt |t , . . . , ŷt+w−1 |t) ∈ Xw
to be a solution to the w-step lookahead optimization

(12). RHC implements only xt from the solution which corresponds to X1(xt−1, ŷt |t , . . . , ŷt+w−1 |t)
before moving to the next timeslot and repeating the procedure. The formal procedure is stated in

Algorithm 3.

Algorithm 3 Receding Horizon Control (RHC)

1: for t = 1, . . . ,T do
2: Solve (12) and return xt = X1(xt−1, ŷt |t , . . . , ŷt+w−1 |t).
3: end for

Unfortunately however, [36] proved that RHC can have a competitive ratio that does not improve

as the prediction window size increases, even if the predictions are perfect. Note that a constant

competitive ratio is equivalent to a linear dynamic regret.

The work of [18] generalized RHC by providing a class of algorithms called Committed Horizon

Control (CHC). It has a tunable a parameter v ∈ {1, . . . ,w} called the commitment level which

sets how much influence old decision trajectories have on the current decision. These old decision

trajectories result from past solutions of (12) which used past predictions but were not implemented.

The formal details are presented in Algorithm 4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:9

Algorithm 4 Committed Horizon Control (CHC)

1: if t = 1 then
2: for k = 2, . . . ,v do
3: Solve (12) starting from x0 using k − 1 steps of predictions.

4: Set (x (k)
1
, . . . ,x (k)k−1) = X (x0, ŷ1 |1, . . . , ŷk−1 |1).

5: end for
6: end if
7: for t = 1, . . . ,T do
8: Set k = 1 + (t − 1) mod v .

9: Solve (12) starting from x (k)t−1 usingw steps of predictions.

10: Set (x (k)t , . . . ,x
(k)
t+v−1) = X1:v (x (k)t−1, ŷt |t , . . . , ŷt+w−1 |t).

11: Return xt =
1

v
∑v

j=1 x
(j)
t .

12: end for

Note that RHC is CHC with v = 1 where no old decision trajectories are incorporated in the

current decision as it just solves (12) and implements the first decision with no memory of its past

solutions. An advantage to having old decision trajectories influence the current decision is that

it can smooth the implemented decisions being made. However, this also incorporates extra loss

from those predictions that were made looking further into the future.

The prediction error budget model (7) gives us enough structure on the prediction errors to

prove the following upper bound on dynamic regret for CHC.

Theorem 4. CHC has the following upper bound on dynamic regret:

RCHC
T (B1:w,T ,L) ≤

2

v

(
DαT +

v∑
k=1

Bk,T

)
. (13)

See Appendix A.3 for the proof.

Theorem 4 shows us that the commitment levelv has two opposing effects on the dynamic regret

of CHC which depends directly on the effect that the lookahead has on the error budget. If the

error budget does not increase quickly as the lookahead k increases, then increasing v will make

the upper bound smaller. However, if the error budget increases rapidly as one lookahead further

in time, then v should remain small.

On the other side, we provide a lower bound on CHC.

Theorem 5. Assume L ≥ D. For any v , CHC has the following lower bound on dynamic regret:

RCHC
T (B1:w,T ,L) ≥

(
1

w + 1
T − 1

)
αD. (14)

See Appendix A.4 for the proof.

Notice that the RHS of (14) holds even when the algorithm has access to perfect predictions.

The bad example used in proving the theorem shows us that in an application environment with

an area of shallows cost, it is possible for CHC to get stuck at a single point in an area of shallow

cost and incur a cost that is a constant amount more than that of the optimal solution at every

timeslot. This can happen in a cloud computing environment when the cost of over-provisioning

a resource for a short timescale is relatively low compared to its switching cost. This situation

can cause CHC to constantly over-provision beyond the optimal level since that within its given

prediction window it sees that switching to a lower level would be too expensive. Over a long time

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:10 J. Comden et al.

Table 1. Upper Bounds on Dynamic Regret by Algorithm

Alg. Dynamic Regret

OGD 2

√
Dκ(2Dκ + L)G

(
G
2
+ α

κ

)
T

OBD 2BT + α
√

2GLT
m

CHC

2

v

(
DαT +

∑v
k=1 Bk,T

)
Table 2. Dynamic Regret depending on the complexity of the error budget BT and the optimal path length L.

Bk,T ∈ o(T) Bk,T ∈ O(T) Bk,T ∈ o(T) Bk,T ∈ O(T)
Alg. L ∈ o(T) L ∈ o(T) L ∈ O(T) L ∈ O(T)
OGD o(T) o(T) O(T) O(T)
OBD o(T) O(T) O(T) O(T)
CHC O(T /v) O(T) O(T /v) O(T)

horizon, the over-provisioning costs would accumulate to becoming much greater than that of

switching to a near optimal level earlier in time. However on the plus side, this theorem gives us

the key to avoiding that scenario which is to utilize more predictions with a largerw .

Observe that the upper bound and lower bound just about meet when v = w and there is zero

error budget. Under those conditions, the bounds decrease with increasingw . Unsurprisingly, this

means that if perfect predictions are available, they should all be used. However, when prediction

error exists, the commitment level should be chosen carefully depending on how quickly the error

budget Bk,T increases with k while increasing the prediction windoww is always advantageous

with respect to the lower bound.

4.4 Algorithm Selection
With all of the available algorithms described above, the decision becomes which one(s) should be

chosen at runtime and at what parameter settings. The proved upper bounds on dynamic regret

for all the described algorithms are summarized in Table 1. Remember that CHC also includes

RHC when v = 1. Note that even thought the stepsize setting η for OGD given in Corollary 2

minimizes the worst-case, it may not be the best setting to use in practice since it may rarely or

never experience adversarial worst-cases.

Additionally, it is important to know under what conditions and for which algorithms that

dynamic regret can be proved to be sublinear with respect to the time horizon T . This depends on
the complexity that error budget Bk,T and optimal path length L have on the dynamic regret. Table

2 shows the dynamic regret complexities for the described algorithms under different complexities

of Bk,T and L. OGD gives sublinear dynamic regret whenever the optimal path length L is sublinear.

OBD can also obtain sublinear dynamic regret when both BT and L are sublinear. When the error

budgets are sublinear, CHC can lower its upper bound by increasing its commitment levelv towards

the prediction window sizew . However when the error budgets are linear, the optimal v depends

on the relationship of the steps of prediction k on Bk,T .
Nonetheless in practice, it may be difficult to know beforehand the relationship of the optimal

solution’s path length L to that of the time horizon T . Actually, even the time horizon itself is not

usually known beforehand. Therefore, the decision of which algorithm to choose and its parameter

setting should be decided in an online manner. In this direction, we design a simple meta-algorithm

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:11

t t+π

Cumulative

Cost

Action

xt

time

A =1 A = 2 A = 3

Fig. 1. Meta-algorithm example. Initially the meta-algorithm is on ALG-1 before time t , however it notices
that ALG-1’s cumulative cost is increasing rapidly. At t , it switches to ALG-2 and not ALG-3 because the
switching cost associated with distance between ALG-1 and ALG-3 is too large. However at t +π , the distance
between ALG-2 and ALG-3 allow the meta-algorithm to switch to ALG-3 which still has the lowest cumulative
cost.

that selects which algorithm from a finite set Γ to implement and periodically updates its selection

according to past performance. The technical details are given in Algorithm 5.

Algorithm 5Meta-algorithm

1: Initialize selected algorithm, A ∈ Γ.
2: for t = 1, . . . ,T do
3: if t mod π = 0 then
4: Select A := argmini ∈Γ

{
cost(i,y1:t−1) + α ∥xA

t−1 − x (i)t−1∥
}

5: end if
6: Receive x (i)t from every algorithm i ∈ Γ.

7: Implement xA
t .

8: end for

It essentially learns which algorithm was the best in hindsight and switches to that while

taking into account the cost of switching from its current algorithm trajectory to that of another.

Specifically, it runs all algorithms in parallel and evaluates their costs according to their past

decisions. At every π timeslots, it greedily chooses the algorithm which has the lowest current total

incurred cost in addition to the cost of switching to that algorithm’s decision trajectory. It then

commits to that algorithm for the next π timeslots. See Figure 1 for an explanatory demonstration

of what is happening at Line 4 of Algorithm 5. We show its practical performance in Section 6.

For some practical applications, it may very costly to run all possible algorithms under a large

number of settings simultaneously due to the processing power constraints of the controller. In

these cases, the upper bounds shown in Table 1 along with past observed values of their parameters

can be used to appropriately select a small number of algorithms under limited settings for the

meta-algorithm’s set Γ.

5 VIRTUAL MACHINE PREDICTION
Before applying the online algorithms described in Section 4 to cloud resource provisioning, we

need to first analyze the workload traces and generate predictions for the online algorithms. In this

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:12 J. Comden et al.

5
1

5

time(day)

C
P

U
 u

ti
l

0 7 14 21 28

VM−810

1
0

3
0

time(day)
0 7 14 21 28

VM−925

5
8

1
1

time(day)
0 7 14 21 28

#core=1

0
4

0

time(day)

C
P

U
 u

ti
l

0 7 14 21 28

VM−36

0
3

0

time(day)
0 7 14 21 28

VM−529

4
8

1
4

time(day)

#core=2

0
1

5

time(day)

C
P

U
 u

ti
l

0 7 14 21 28

VM−39

5
1

5

time(day)
0 7 14 21 28

VM−272

4
6

8

time(day)
0 7 14 21 28

#core=4

0
6

0

time(day)

C
P

U
 u

ti
l

0 7 14 21 28

VM−118

2
8

time(day)
0 7 14 21 28

VM−892

1
3

5

time(day)
0 7 14 21 28

#core=8

0
.0

1
0

0
.0

4
0

time(day)

C
P

U
 u

ti
l

0 7 14 21 28

VM−947

0
6

0

time(day)
0 7 14 21 28

VM−970

0
1

5

time(day)
0 7 14 21 28

#core=16

Fig. 2. Time series of VM CPU utilization with reserved number of cores 1, 2, 4, 8, and 16 (from Row 1 to Row
5, respectively).

section, we first study the MS Azure dataset in Section 5.1. Then we analyze the prediction errors

from several methods in Section 5.2 and model the errors in Section 5.3.

5.1 The MS Azure Dataset
We study the CPU utilization of 1,003 long running virtual machines (VMs) from the Microsoft

Azure Public Dataset [23], which contains over two million VMs that ran during a 30 day interval

between the dates Azure from November 16, 2016 and February 16, 2017. The particular VM trace

IDs used in this analysis are listed in [22]. For each VM, the utilization is measured every five

minutes, so 288 data points are collected each day. In other words, this dataset contains 1,003 time

series, each corresponding to the CPU utilization of a VM.

The VMs provision different numbers of CPU cores. In this dataset, VMs may reserve 1, 2, 4, 8,

and 16 CPU cores due to the limited VM types provided in Azure. The numbers of VMs with cores

1, 2, 4, 8, and 16 are 557, 126, 193, 103, and 24, respectively.

To have a better idea on the time series and heterogeneity features of the data, we show time

series of CPU utilization of VMs with cores 1, 2, 4, 8, and 16 in each row of Figure 2. On each

row, the first two plots show the CPU utilization of two randomly selected VMs provisioning the

corresponding number of CPU cores, and the third plot shows the time series of CPU utilization

averaged across all VMs with the same number of cores.

Some interesting features of the data can be found in Figure 2. First, most series contain one or

several big spikes in CPU utilization, and most spikes are not periodic.These spikes are important

in cloud resource provisioning. If resources are under provisioned during these periods, large

performance degradations may occur. Therefore, they can not be treated as outliers of the series

like the traditional time series analysis. Second, all series show strong seasonal effects and are not

stationary. Although the actual usage of CPU in each VM is different over time, the pattern of CPU

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:13

mean

−2 0 2 4

0
6

0

standard deviation

0.0 0.5 1.0 1.5 2.0

0
8

0

skewness

0 5 10

0
6

0

kurtosis

0 50 100 150

0
1

0
0

−2 −1 0 1 2 3

0
1

5

0.5 1.0 1.5
0

3
0

0 2 4 6

0
1

5

0 20 40 60 80

0
2

0

−2 −1 0 1 2 3

0
3

0

0.5 1.0 1.5 2.0

0
5

0

0 2 4 6

0
3

0

0 20 40 60 80

0
3

0

−2 −1 0 1 2 3

0
1

5

0.5 1.0 1.5

0
2

0

0 2 4 6

0
1

5

0 20 40 60 80

0
2

0

0
3

0
3

0
4

0
6

Fig. 3. Histograms of sample means, sample standard deviations, sample skewness, and sample kurtosis of
CPU utilization of VMs with cores 1, 2, 4, 8, 16 (from Row 1 to Row 5, respectively). The reported sample
statistics are calculated after taking the logarithm of the original trace values.

utilization in each day seems significant. Third, the patterns in the time series of CPU utilization

for VMs with different number of cores seem different. For example, the spikes in VMs with 1 core

or 16 cores are much stronger and irregular than those in VMs with 4 or 8 cores.

The time series of CPU utilizations are not log-normally distributed. Since utilization is positive,

we consider the value after taking the logarithm. Figure 3 shows histograms of sample means,

sample standard deviations, sample skewness, and sample kurtosis of the VM CPU utilization

different cores. Two to four modes are observed in the sample means, and large dispersions are

shown in the sample standard deviations. Besides, almost all series are positively skewed and most

of their kurtosis are much larger than 3 (the kurtosis of a normal distribution), suggesting the

logarithms series of CPU utilization are not normally distributed. These heterogeneous features

indicate that it is difficult to fit a universal type of prediction models to the data.

5.2 Analysis of Empirical Prediction Error
We use four prediction methods for the dataset. The first one is kind of naive, which uses the last

observation as the k-step-ahead prediction. The second model uses random forests (RF) regression,

a widely used ensemble learning method. The third model use the seasonal exponential smoothing

(SES) method to decompose the series into trend, seasonal and remainder components, and then

extrapolates the trend effect as predictions. The fourth model is an extension of the SES model,

which fits an ARMA(p,q) model to the de-seasoned series obtained in the SES model, we denote

this as SARMA.

We obtain the out-of-sample predictions of the last three models in the following way. For the

series of the ith VM, we use observations {yi
1
, . . . ,yit } as the training data and fit them in the RF

and time series models to compute k-step-ahead predictions ŷit+k |t , which is the prediction of the

VM i’s CPU utilization at time t + k predicted at time t .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:14 J. Comden et al.

Table 3. MAE and MSDE of predictions for CPU utilization.

Step

MAE MSDE

SES SARMA RF Naive SES SARMA RF Naive

1 .709 .695 .650 .782 1.131 1.085 1.143 1.324

2 .765 .744 .730 .829 1.240 1.184 1.255 1.483

3 .795 .769 .768 .824 1.293 1.234 1.326 1.534

4 .825 .804 .806 .876 1.331 1.279 1.364 1.623

5 .847 .818 .838 .912 1.365 1.305 1.400 1.623

We use one-week trace as the test data to calculate the k-step-ahead prediction error, Eit,k =

|yit+k − ŷit+k |t |. We consider two error metrics: the mean absolute error (MAE),

MAEk =
1

NT

N∑
i=1

T∑
t=t0

Eit,k , (15)

and the mean standard deviation of errors (MSDE),

MSDEk =
1

N

N∑
i=1

√√√
1

T − 1

T∑
t=t0

(Eit,k − E
i
t,k)2, (16)

where N is the number of VMs (1,003 in the Azure dataset) and t0 is the start of the test set. And

E
i
t,k is the average value of {Eit,k } with t from t0 to T .

Table 3 summarizes the MAE and MSDE of different models for k = 1, . . . , 5. We can see that

both MAE and MSDE increase with larger prediction steps for all methods, and the naive prediction

has the worst performance. RF has a smaller MAE, but the variance in error MSDE is larger than

SES and SARMA. SARMA is slightly better than that of the SES model, both the SES and the SARMA

models have smaller MSDE, indicating their predictions are more robust.

5.3 Error Budget Modeling
Based on the predictions obtained above, we consider the accumulated prediction errors of different

methods over time. In order to find the relationship between steps of prediction and the error

budget, we consider the averaged cumulative sums of k-step-ahead absolute prediction errors

(CAPE) across all VMs,

CAPEk (s) =
1

N

N∑
i=1

s∑
t=t0

Eit,k . (17)

Figure 4 and 5 show the CAPE of different models with k = 1 for s = 0, . . . , 2000 for all VMs and 4

particular VMs, respectively. It is clear that the CAPE increases approximately linearly over time.

Therefore, we consider the following error budget model in the rest of study,

Bk,T = bkT (18)

where bk is expected to increase with k . Hence to investigate the property of bk when different

prediction step k is employed, we compare the CAPEk of VM-118 in Figure 6 with k = 1, 8 and 16

for different prediction methods. And the results match our intuition that bk should be an increasing
sequence of k .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:15

0

500

1000

1500

0 2500 5000 7500 10000

time(min)

C
A

P
E

method

Naive

RF

SARMA

SES

Fig. 4. CAPE(s) for different methods.

0

25

50

75

0 2500 5000 7500 10000

time(min)

C
A

P
E

method

Naive

RF

SARMA

SES

VM−810

0

2000

4000

6000

0 2500 5000 7500 10000

time(min)

C
A

P
E

method

Naive

RF

SARMA

SES

VM−118

0

500

1000

1500

0 2500 5000 7500 10000

time(min)

C
A

P
E

method

Naive

RF

SARMA

SES

VM−614

0

500

1000

1500

0 2500 5000 7500 10000

time(min)

C
A

P
E

method

Naive

RF

SARMA

SES

VM−409

Fig. 5. Time v.s CAPE(s) for 4 VMs

6 PERFORMANCE EVALUATION
In order to measure the performance of our simple meta-algorithm in a cloud computing environ-

ment, we run simulations based on the Azure Public Dataset [23] described in detail in Section 5.

We show that the meta-algorithm outperforms the popular Weighted Majority Algorithm [39] in

almost all simulations and is close the that of the best picked algorithm in hindsight.

6.1 Setup
First we give a description of the setup followed by a detailed performance analysis. Suppose that

at every 5-minute timeslot t , a cloud provider needs to decide how much CPU xt to allocate to a

particular VM. The amount of CPU is expressed as the fraction of the 5-minute timeslot a CPU is

devoted to the VM. The VM can receive a maximum CPU of R virtual cores at each timeslot which is

set at the initialization of the VM. The cost incurred to the provider for supplying CPU is expressed

as an increasing linear relationship with c as the per unit cost due to operational expenses such
as electricity and cooling. On the other side, the VM demands yt CPU which is unknown before

the allocation decision is made. If the demand yt is larger than the allocation xt , then the provider

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:16 J. Comden et al.

0

2000

4000

6000

0 2500 5000 7500 10000

time(min)

C
A

P
E

step

k=1

k=16

k=8

SES

0

2000

4000

6000

0 2500 5000 7500 10000

time(min)

C
A

P
E

step

k=1

k=16

k=8

SARMA

0

2000

4000

6000

8000

0 2500 5000 7500 10000

time(min)

C
A

P
E

step

k=1

k=16

k=8

RF

0

2000

4000

6000

0 2500 5000 7500 10000

time(min)
C

A
P

E

step

k=1

k=16

k=8

Naive

Fig. 6. Time v.s. CAPE(s) for VM-118 under different prediction models

incurs a cost in the form of lost revenue or service agreement violation penalties. This cost increases

linearly with the size of the demand deficit by unit cost p. However, if the allocation is equal to or

greater than the demand, no additional cost is incurred. Also, the provider incurs the switching

cost α when changing CPU allocation decisions between timeslots. The offline optimization for the

provider can be stated as the following:

min

x1, ...,xT

T∑
t=1

(
cxt + p (yt − xt)+ + α |xt − xt−1 |

)
(19)

s.t. 0 ≤ xt ≤ R ∀t ∈ {1, . . . ,T }

where (x)+ := max{0,x}. Each VM is simulated to run for 1 week and changes its demand quantities

yt every 5 minutes based on the CPU usage traces in the Azure Public Dataset [23]. The particular

VM trace IDs used in these simulations are listed in [22]. While CPU utilization traces are not

necessarily the actual CPU demand but are instead produced by the demand under a particular

resource allocation, they are strongly correlated with demand itself and so can still be used to

demonstrate the performance of cloud resource provisioning algorithms. Specifically, the Utilization

Law states that the utilization during a particular time interval is equal to the product of the average

throughput and average demand [25], which is how the utilization traces are used here. The starting

point x0 is set to be the Naive prediction for y1. The maximum CPU amount R depends on the

VM and is in the set {1, 2, 4, 8, 16}. The operational cost coefficient c is set to $0.0005/(5-min-core)

which is sized according to the electricity consumption of a 1400 W server hosting 24 virtual cores

at $0.07/kWh. The insufficient allocation cost coefficient p is set to $0.0035/(5-min-core) which is

sized from the current pricing of an Azure Av2 Standard 8-core VM for $0.333/hour. We vary the

switching cost parameter α anywhere in the range of $[0,0.144]/(5-min-core) which has a maximum

cost equivalent to running the CPU for a day.

For the algorithms which utilize predictions, we train the SARIMA and Random Forest regression

prediction models with three weeks of data to be used in the following week’s predictions. At each

5-min timeslot, each prediction model gives CPU demand predictions for the next 288 5-minute (1

day’s worth) timeslots. We also employ the simple Naive prediction model as a baseline.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:17

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.5

1

1.5

N
o

rm
a

liz
e

d
 C

o
s
t

Dyn Select

Weight Maj

Off Select

Opt Soln

Fig. 7. Average cost incurred by the meta-algorithm (Dyn Select) among the 55 simulated VMs vs. switching
cost coefficient α . The cost of each VM is individually normalized by that of its offline optimal solution before
being averaged among the others. The meta-algorithm is compared against the Weighted Majority Algorithm
and the Offline selection benchmark.

The online algorithms available for the Meta-algorithm to choose from include the following:

individual versions of RHC utilizing the three different prediction models, individual versions

of OBD utilizing the three different prediction models each with 21 different stepsize settings,

individual versions of OGD with 21 different stepsize settings, and the two following allocation

settings of xt = R and xt = x0 which simply hold constant the allocation at that level for the

entire time horizon. The stepsizes used in OBD and OGD are η = 2
k
: ∀k ∈ {−10, . . . , 10}. The

commitment duration for the meta-algorithm to stick to a particular online algorithm is set to be

144 5-minute (1/2 day’s worth) timeslots.

We use two baselines to evaluate our meta-algorithm. The first is an impractical one called

“Offline Selection" which picks the best algorithm in hindsight. And the second is the widely known

Weighted Majority Algorithm (WMA) [39] which makes a decision based on the weighted average

among different algorithms. The weights are updated at each timeslot based on their performances.

In our implementation of WMA, we discount the weights of all algorithms by β except the one

which incurred the least cost in the previous timeslot. Afterwards, the weights are normalized

before they are used to make the allocation decision. The discount rate β was set to 2
−4

which was

found to perform best among the VMs from the set 2
−i

for i ∈ {1, . . . , 10}.
From the concrete structure of the objective function in (19), we can evaluate the error budget

(7) as the following measurable quantity:

Bk,T =
T∑
t=1

max

x ∈[0,R]

��p (yt − x)+ − p
(
ŷt |t−k+1 − x

)+��
= p

T∑
t=1

|yt − ŷt |t−k+1 |

which is a scalar multiple of MAEk defined in (15).

6.2 Results
This section mostly showcases simulations of four individual VMs that have high prediction

error and large time variations in CPU demand which are commonly occurring situations in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:18 J. Comden et al.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 C

o
s
t

Dyn Select

Weight Maj

Off Select

Opt Soln

(a) VM-118

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 C

o
s
t

Dyn Select

Weight Maj

Off Select

Opt Soln

(b) VM-562

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 C

o
s
t

Dyn Select

Weight Maj

Off Select

Opt Soln

(c) VM-646

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 C

o
s
t

Dyn Select

Weight Maj

Off Select

Opt Soln

(d) VM-721

Fig. 8. Cost incurred by the meta-algorithm (Dyn Select) vs. switching cost coefficient α under VMs: (a) 118,
(b) 562, (c) 646, (d) 721. The costs are normalized by that of the offline optimal solution and compared against
the Weighted Majority Algorithm and the Offline selection benchmark.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 C

o
s
t

RHC-RF

OBD-NAIVE(=1/2)

OBD-NAIVE(=1)

OGD(=2)

OGD(=64)

Off Select

Opt Soln

(a) VM-118

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 C

o
s
t

RHC-RF

OBD-RF(=1/16)

OBD-RF(=8)

Off Select

Opt Soln

(b) VM-562

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

1

1.2

1.4

1.6

1.8

2
N

o
rm

a
liz

e
d
 C

o
s
t

RHC-RF

OBD-SARIMA(=1/64)

OBD-SARIMA(=1/16)

OGD(=1/4)

Off Select

Opt Soln

(c) VM-646

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

1

1.2

1.4

1.6

1.8

2

N
o
rm

a
liz

e
d
 C

o
s
t

RHC-SARIMA

OBD-SARIMA(=1/16)

OBD-SARIMA(=1/2)

Off Select

Opt Soln

(d) VM-721

Fig. 9. Cost incurred by each individual algorithm vs. switching cost coefficient α under VMs: (a) 118, (b) 562,
(c) 646, (d) 721. The costs are normalized by that of the offline optimal solution and compared against the
Offline selection benchmark.

practice. Additionally, we run simulations derived from 55 randomly chosen VM traces out of

the 1,003 studied in Section 5 to give an average performance. We study the performance of our

meta-algorithm, the dependency of a particular VM and the size of switching cost on the specific

algorithms’ performances, and characterize the error budget and optimal solution’s path length

which connect back to the dynamic regret guarantees from Section 4.

6.2.1 Meta-algorithm performance. The performance of our simple meta-algorithm was compared

against the “Offline" selection benchmark that picks the best single algorithm in hindsight and

the popular Weighted Majority Algorithm. All of the meta-algorithms were run under constant

parameter settings among the VMs. Figure 7 gives the incurred cost normalized by that of the

optimal solution versus the swithching cost coefficient α for the 55 VMs averaged together. The

proposed meta-algorithm on average is consistently much closer to the offline selection benchmark

than theWeightedMajority Algorithm. These observations are also found at the individual VM-level.

Figure 8 gives the incurred cost normalized by that of the optimal solution versus the swithching

cost coefficient α for four individual VMs. In almost all situations, our meta-algorithm has a lower

cost than that of the Weighted Majority Algorithm and very closely follows the performance of the

Offline selection benchmark which is already relatively close to that of the optimal solution. There is

a case where theWeighted Majority Algorithm does better than the meta-algorithm (See Figure 8(d))

under low switching costs. However, at higher switching costs the Weighted Majority Algorithm

has a cost greater than twice the optimal cost while the meta-algorithm remains closer to that of

the optimal solution. These average and individual results give evidence that the meta-algorithm’s

performance is robust to the different switching costs. Its robustness comes from its design as it

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:19

0 1 2 3 4 5 6 7

time, days

0

0.5

1

N
o

rm
a

liz
e

d
 C

o
s
t

Dyn Select

Weight Maj

Off Select

Opt Soln

0 1 2 3 4 5 6 7

time, days

0.05

0.06

0.07

x
t

0 1 2 3 4 5 6 7

time, days

0

50

A
lg

o
ri
th

m
 I

D

Fig. 10. Accumulated normalized cost vs. time (top), allocation decision trajectory (middle), algorithm decision
trajectory (bottom) of the meta-algorithm (Dyn Select) with a switching cost coefficient of α = 0.036 for
VM-646. It is compared to the Weighted Majority Algorithm and the Offline selection benchmark. Relevant
Algorithm IDs: 1 = xt = x0; {6,...,26} = OGD; {27,...,47} = OBD-SARIMA; {48,...,68} = OBD-RF.

does not just consider which algorithm is currently the best performing but also takes into account

the extra cost it would incur by switching to a different one.

A sample allocation and algorithm decision trajectory along with its cost accumulation is given in

Figure 10 of VM-646 with a switching cost coefficient of α = 0.036. It shows that the meta-algorithm

closely tracks the Offline selection benchmark (OBD-SARIMA, η = 2
−6
) which tracks the offline

optimal solution. It also does not incur a significant amount of cost during time it is further away

from the optimal solution. However, the Weighted Majority Algorithm gets stuck with a majority

of its weight on an algorithm that remains constant (xt = x0) or moves very slowly (OGD with

extremely small stepsize η = 2
−10

). This is due to the fact that it updates its weights based on

the incurred cost at the previous timeslot. Algorithms that constantly move to better positions

constantly incur switching costs and may never be counted as the “best" algorithm and thus always

have their weights discounted.

6.2.2 Algorithm performance dependency on VM and α . Figure 9 gives the incurred cost normalized

by that of the optimal solution versus the swithching cost coefficient α for the algorithm settings

that perform the best within their type (RHC, OBD, OGD). The algorithm which performs the best

among those tested has a strong dependency on both the VM it was run on and the switching cost

parameter α . For example, RHC-RF is the best algorithm for VM-118 (Figure 9(a)) during low α but

performs poorer during high α . Whereas, RHC is the best algorithm for VM-562 (Figure 9(b)) and

VM-721 (Figure 9(d)) during high α . This is true even though VM-118 and VM-562 are using the

same prediction model (Random Forest regression). Among all four VMs, it shows that the optimal

stepsize η for OBD decreases as α increases. The same observation can also be seen for OGD on

VM-118. This is in agreement with Corollary 2 for OGD and Theorem 3 for OBD.

Figure 11 shows the allocation decision trajectories of different algorithms for VM-646 with

switching cost coefficient α = 0.036. In this case, OBD and OGD better matches with the smoothness

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:20 J. Comden et al.

0 1 2 3 4 5 6 7

time, days

0.05

0.06

0.07

x
t

RHC-RF

Opt Soln

0 1 2 3 4 5 6 7

time, days

0.05

0.06

0.07

x
t

OBD-RF

OBD-SARIMA

0 1 2 3 4 5 6 7

time, days

0.05

0.06

0.07

x
t

OGD

Opt Soln

Fig. 11. Allocation decision trajectories of RHC (top), OBD (middle), and OGD (bottom) for VM-646 with
α = 0.036 compared to that of the optimal solution.

1 2 3 4 5 6 7

time horizon T, days

0

0.02

0.04

0.06

E
rr

o
r

B
u

d
g

e
t

B
T
, SARIMA

B
T
, RF

B
T
, NAIVE

1 2 3 4 5 6 7

time horizon T, days

0

0.005

0.01

0.015

0.02

O
p

t
S

o
ln

 p
a

th
 l
e

n
g

th

L, = 0.036

L, = 0.063

L, = 0.108

Fig. 12. Error budget (top) and optimal solution’s path length (bottom) with respect to the time horizon T for
VM-646.

of optimal solution’s trajectory as compared to the jittery RHC trajectory. It can also be seen that

OBD is more stable to different predictions compared to RHC as different predictions (SARIMA

and RF) only has slight impact on the general direction that it moves.

6.2.3 Error Budget and Optimal Path Length. Figure 12 gives the error budget BT and the optimal

solution’s path length as a function of the time horizonT for VM-646 with switching cost coefficient

α = 0.036. Specifically, this means that for each time horizon T ∈ {1, . . . , 2016} (one week’s worth)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:21

an optimal solution was found as if the problem was only defined from 1 toT . The difference in the

error budget BT explains why OBD-RF performed better than OBD-SARIMA in Figure 11.

For the optimal path length L, notice that it is not increasing monotonically with the time horizon

T . In fact, there are intervals of time with consistent decline. Also, it seems to get increasingly

sublinear with increasing α but it can have periods that trend linearly. For example, see α = 0.108
from days 1 to 4 which increases linearly and is then followed by a slight linear decline. This

complex nature of the optimal path length seems to suggest why the algorithm type (RHC, OBD,

OGD) that is best can vary between VMs regardless on differences in error.

7 CONCLUSION
In this paper, we bridge the gap between prediction errors and online optimization algorithms. We

provide a simple and intuitive prediction error model, which is used to derive theoretical upper

bounds on the dynamic regret of popular online algorithms. Compared to existing literature, the

novelty lies in the incorporation of switching costs, which couples decisions over time. In order to

choose which algorithm to run without prediction error and optimal path length knowledge, we

design a simple online meta-algorithm to carefully select which algorithm to follow based on past

performance and the switching costs. Our real-world trace driven simulations highlight the proposed

meta-algorithm outperforms a popular algorithm selection policy significantly and perform very

closely to that of the best algorithm chosen in hindsight. Most prediction algorithms including those

used in this paper are application agnostic, and developing computationally efficient, application

specific prediction algorithms is our ongoing work. For future work, we plan to theoretically

characterize the proposed meta-algorithm to explain its performance advantages over existing

meta-algorithms as observed in Section 6. Also, exploring how predicting the optimal solution’s

path length could be incorporated into an algorithm selection policy is a very interesting direction.

On the application side, we plan to evaluate the performance of the proposed meta-algorithm in an

environment that provisions multiple resource types to each VM. Additionally, detailed experiments

that run an application on VMs could be used to measure true resource demands that include

feedback effects that result from the provisioning decisions.

8 ACKNOWLEDGMENTS
We would like to thank our reviewers and shepherd for their detailed comments and suggestions in

making this paper more complete. This research was partially funded by NSF grants CNS-1617698,

CNS-1717588, CNS-1730128, DGE-1633299, and DMS-1612501.

REFERENCES
[1] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. 2018. Elasticity in cloud computing: state of

the art and research challenges. IEEE Transactions on Services Computing 11, 2 (2018), 430–447.

[2] Ahmad Al-Shishtawy and Vladimir Vlassov. 2013. Elastman: elasticity manager for elastic key-value stores in the

cloud. In Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference. ACM, 7.

[3] Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson, Alan Roytman, and Adam

Wierman. 2013. A tale of two metrics: Simultaneous bounds on competitiveness and regret. In Conference on Learning
Theory. 741–763.

[4] Lachlan LH Andrew, Minghong Lin, and Adam Wierman. 2010. Optimality, fairness, and robustness in speed scaling

designs. In ACM SIGMETRICS Performance Evaluation Review, Vol. 38. ACM, 37–48.

[5] Danilo Ardagna, Michele Ciavotta, and Riccardo Lancellotti. 2014. A receding horizon approach for the runtime

management of iaas cloud systems. In Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2014 16th
International Symposium on. IEEE, 445–452.

[6] Adnan Ashraf, Benjamin Byholm, and Ivan Porres. 2012. CRAMP: Cost-efficient resource allocation for multiple web

applications with proactive scaling. In Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on. IEEE, 581–586.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:22 J. Comden et al.

[7] Lee Badger, Tim Grance, Robert Patt-Corner, Jeff Voas, et al. 2012. Cloud computing synopsis and recommendations.

NIST special publication 800 (2012), 146.

[8] Jeff Barr. 2018. New AWS Auto Scaling – Unified Scaling For Your Cloud Applications. https://aws.amazon.com/blogs/

aws/aws-auto-scaling-unified-scaling-for-your-cloud-applications/.

[9] Omar Besbes, Yonatan Gur, and Assaf Zeevi. 2015. Non-stationary stochastic optimization. Operations research 63, 5

(2015), 1227–1244.

[10] Peter Bodik, Michael Paul Armbrust, Kevin Canini, Armando Fox, Michael Jordan, and David A Patterson. 2008. A

case for adaptive datacenters to conserve energy and improve reliability. University of California at Berkeley, Tech. Rep.
UCB/EECS-2008-127 (2008).

[11] Allan Borodin and Ran El-Yaniv. 2005. Online computation and competitive analysis. cambridge university press.

[12] A Borodin, N Linial, and M Saks. 1987. An optimal online algorithm for metrical task systems. In Proceedings of the
nineteenth annual ACM symposium on Theory of computing. ACM, 373–382.

[13] Allan Borodin, Nathan Linial, and Michael E Saks. 1992. An optimal on-line algorithm for metrical task system. Journal
of the ACM (JACM) 39, 4 (1992), 745–763.

[14] Mark Brinda and Michael Heric. 2017. The Changing Faces of the Cloud. Bain Company (2017).

[15] Eduardo F Camacho and Carlos Bordons Alba. 2013. Model predictive control. Springer Science & Business Media.

[16] Eddy Caron, Frédéric Desprez, and Adrian Muresan. 2010. Forecasting for Cloud computing on-demand resources

based on pattern matching. (2010).

[17] Niangjun Chen, Anish Agarwal, Adam Wierman, Siddharth Barman, and Lachlan LH Andrew. 2015. Online convex

optimization using predictions. In ACM SIGMETRICS Performance Evaluation Review, Vol. 43. ACM, 191–204.

[18] Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam Wierman. 2016. Using predictions in online

optimization: Looking forward with an eye on the past. In Proceedings of the 2016 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Science. ACM, 193–206.

[19] Niangjun Chen, Gautam Goel, and Adam Wierman. 2018. Smoothed Online Convex Optimization in High Dimensions

via Online Balanced Descent. In Proceedings of the 31st Conference On Learning Theory (Proceedings of Machine
Learning Research), Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet (Eds.), Vol. 75. PMLR, 1574–1594.

http://proceedings.mlr.press/v75/chen18b.html

[20] Niangjun Chen, Xiaoqi Ren, Shaolei Ren, and Adam Wierman. 2015. Greening multi-tenant data center demand

response. Performance Evaluation 91 (2015), 229–254.

[21] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt, and Andrew

Warfield. 2005. Live migration of virtual machines. In Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation-Volume 2. USENIX Association, 273–286.

[22] Joshua Comden, Sijie Yao, Niangjun Chen, Haipeng Xing, and Zhenhua Liu. 2019. Online Optimization in Cloud

Resource Provisioning: Predictions, Regrets, and Algorithms: Virtual Machine ID Dataset. https://doi.org/10.5281/

zenodo.2555195

[23] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and Ricardo Bianchini. 2017. Resource

central: Understanding and predicting workloads for improved resource management in large cloud platforms. In

Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 153–167.

[24] Ariel da Silva Dias, Luis HV Nakamura, Julio C Estrella, Regina HC Santana, and Marcos J Santana. 2014. Providing

IaaS resources automatically through prediction and monitoring approaches. In Computers and Communication (ISCC),
2014 IEEE Symposium on. IEEE, 1–7.

[25] Peter J Denning and Jeffrey P Buzen. 1978. The operational analysis of queueing network models. ACM Computing
Surveys (CSUR) 10, 3 (1978), 225–261.

[26] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power provisioning for a warehouse-sized computer.

In ACM SIGARCH computer architecture news, Vol. 35. ACM, 13–23.

[27] Carlos E Garcia, David M Prett, and Manfred Morari. 1989. Model predictive control: theory and practice—a survey.

Automatica 25, 3 (1989), 335–348.
[28] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. PRESS: PRedictive Elastic ReSource Scaling for cloud systems.

CNSM 10 (2010), 9–16.

[29] Eric C Hall and Rebecca M Willett. 2015. Online convex optimization in dynamic environments. IEEE Journal of
Selected Topics in Signal Processing 9, 4 (2015), 647–662.

[30] Jinhui Huang, Chunlin Li, and Jie Yu. 2012. Resource prediction based on double exponential smoothing in cloud

computing. In Consumer Electronics, Communications and Networks (CECNet), 2012 2nd International Conference on.
IEEE, 2056–2060.

[31] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. 2012. Empirical prediction models for adaptive resource

provisioning in the cloud. Future Generation Computer Systems 28, 1 (2012), 155–162.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

https://aws.amazon.com/blogs/aws/aws-auto-scaling-unified-scaling-for-your-cloud-applications/
https://aws.amazon.com/blogs/aws/aws-auto-scaling-unified-scaling-for-your-cloud-applications/
http://proceedings.mlr.press/v75/chen18b.html
https://doi.org/10.5281/zenodo.2555195
https://doi.org/10.5281/zenodo.2555195

Online Optimization in Cloud Resource Provisioning 16:23

[32] Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan. 2015. Online optimization: Competing

with dynamic comparators. In Artificial Intelligence and Statistics. 398–406.
[33] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. 2009. Self-adaptive and self-configured CPU

resource provisioning for virtualized servers using Kalman filters. In Proceedings of the 6th international conference on
Autonomic computing. ACM, 117–126.

[34] Chuanqi Kan. 2016. DoCloud: An elastic cloud platform for Web applications based on Docker. In Advanced Communi-
cation Technology (ICACT), 2016 18th International Conference on. IEEE, 478–483.

[35] Sunirmal Khatua, Anirban Ghosh, and Nandini Mukherjee. 2010. Optimizing the utilization of virtual resources in

Cloud environment. In Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), 2010
IEEE International Conference on. IEEE, 82–87.

[36] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan LH Andrew. 2012. Online algorithms for geographical load

balancing. In Green Computing Conference (IGCC), 2012 International. IEEE, 1–10.
[37] Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. [n. d.]. Dynamic right-sizing for power-

proportional data centers. In 2011 Proceedings IEEE INFOCOM.

[38] Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. 2013. Dynamic right-sizing for power-

proportional data centers. IEEE/ACM Transactions on Networking (TON) 21, 5 (2013), 1378–1391.
[39] Nick Littlestone and Manfred K Warmuth. 1994. The weighted majority algorithm. Information and computation 108, 2

(1994), 212–261.

[40] Paul Marshall, Kate Keahey, and Tim Freeman. 2010. Elastic site: Using clouds to elastically extend site resources. In

Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. IEEE Computer

Society, 43–52.

[41] Haibo Mi, Huaimin Wang, Gang Yin, Yangfan Zhou, Dianxi Shi, and Lin Yuan. 2010. Online self-reconfiguration with

performance guarantee for energy-efficient large-scale cloud computing data centers. In Services Computing (SCC),
2010 IEEE International Conference on. IEEE, 514–521.

[42] Hanna Michalska and David Q Mayne. 1993. Robust receding horizon control of constrained nonlinear systems. IEEE
transactions on automatic control 38, 11 (1993), 1623–1633.

[43] Laura R Moore, Kathryn Bean, and Tariq Ellahi. 2013. A coordinated reactive and predictive approach to cloud elasticity.

(2013).

[44] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. 2011. Efficient autoscaling in the cloud using predictive models

for workload forecasting. In Cloud Computing (CLOUD), 2011 IEEE International Conference on. IEEE, 500–507.
[45] Virag Shah and Gustavo de Veciana. 2014. Performance evaluation and asymptotics for content delivery networks. In

INFOCOM, 2014 Proceedings IEEE. IEEE, 2607–2615.
[46] Shahin Shahrampour and Ali Jadbabaie. 2018. Distributed online optimization in dynamic environments using mirror

descent. IEEE Trans. Automat. Control 63, 3 (2018), 714–725.
[47] Yue Tan and Cathy H Xia. 2015. An adaptive learning approach for efficient resource provisioning in cloud services.

ACM Sigmetrics Performance Evaluation Review 42, 4 (2015), 3–11.

[48] Eno Thereska, Austin Donnelly, and Dushyanth Narayanan. 2009. Sierra: a power-proportional, distributed storage

system. Microsoft Research Ltd., Tech. Rep. MSR-TR-2009 153 (2009).
[49] Lixi Wang, Jing Xu, Ming Zhao, and José Fortes. 2011. Adaptive virtual resource management with fuzzy model

predictive control. In Proceedings of the 8th ACM international conference on Autonomic computing. ACM, 191–192.

[50] Lixi Wang, Jing Xu, Ming Zhao, Yicheng Tu, and Jose AB Fortes. 2011. Fuzzy modeling based resource management

for virtualized database systems. In Modeling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2011 IEEE 19th International Symposium on. IEEE, 32–42.

[51] Adam Wierman, Lachlan LH Andrew, and Ao Tang. 2009. Power-aware speed scaling in processor sharing systems.

IEEE INFOCOM, 2009 (2009), 2007–2015.
[52] Shaoquan Zhang, Longbo Huang, Minghua Chen, and Xin Liu. 2017. Proactive Serving Decreases User Delay

Exponentially: The Light-Tailed Service Time Case. IEEE/ACM Trans. Netw. 25, 2 (April 2017), 708–723.
[53] Xiaoxi Zhang, Chuan Wu, Zongpeng Li, and Francis CM Lau. 2017. Proactive vnf provisioning with multi-timescale

cloud resources: Fusing online learning and online optimization. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 1–9.

[54] Martin Zinkevich. 2003. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of
the 20th International Conference on Machine Learning (ICML-03). 928–936.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:24 J. Comden et al.

A PROOFS
A.1 Theorem 1

Proof. Let zt+1 := xt − ηдt ; thus, xt+1 = PX(zt+1). After subtracting off the optimal decision x∗t ,
it becomes zt+1 − x∗t = xt − ηдt − x∗t . Squaring both sides we have:

∥zt+1 − x∗t ∥22 = ∥xt − ηдt − x∗t ∥22
= ∥xt − x∗t ∥22 − 2η⟨дt ,xt − x∗t ⟩ + η2∥дt ∥22

SinceX is convex and PX is the projection operator, then ∀z ∈ Rm and ∀x ∈ X, then ∥PX(z)−x ∥22 ≤
∥z − x ∥2

2
. Using that fact in the above equation, we have

∥xt+1 − x∗t ∥22 ≤ ∥xt − x∗t ∥22 − 2η⟨дt ,xt − x∗t ⟩ + η2∥дt ∥22
and after rearranging the terms, it leads to

⟨дt ,xt − x∗t ⟩ ≤
1

2η

(
∥xt − x∗t ∥22 − ∥xt+1 − x∗t ∥22

)
+
η

2

∥дt ∥22

Since f (xt ,yt) is convex in x , then f (x ,yt) − f (xt ,yt) ≥ ⟨дt ,x − xt ⟩ : ∀x ∈ X and we have that:

f (xt ,yt) − f (x∗t ,yt) ≤ ⟨дt ,xt − x∗t ⟩

≤ 1

2η

(
∥xt − x∗t ∥22 − ∥xt+1 − x∗t ∥22

)
+
η

2

∥дt ∥22 . (20)

Let RT (L) be defined in the following way:

RT (L) :=
T∑
t=1

(f (xt ,yt) + α ∥xt − xt−1∥) −
T∑
t=1

(
f (x∗t ,yt) + α ∥x∗t − x∗t−1∥

)
=

T∑
t=1

(
f (xt ,yt) − f (x∗t ,yt)

)
+ α

T∑
t=1

(
∥xt − xt−1∥ − ∥x∗t − x∗t−1∥

)
≤

T∑
t=1

(
1

2η

(
∥xt − x∗t ∥22 − ∥xt+1 − x∗t ∥22

)
+
η

2

∥дt ∥22
)
+ α

T∑
t=1

(
∥xt − xt−1∥ − ∥x∗t − x∗t−1∥

)
=

1

2η

T∑
t=1

(
∥xt ∥22 − ∥xt+1∥22 + 2⟨xt+1 − xt ,x

∗
t ⟩ +

η

2

∥дt ∥22
)
+ α

T∑
t=1

(
∥xt − xt−1∥ − ∥x∗t − x∗t−1∥

)
=

1

2η

(
∥x1∥22 − ∥xT+1∥22

)
+
1

η

T∑
t=1

⟨xt+1 − xt ,x
∗
t ⟩ +

η

2

T∑
t=1

∥дt ∥22

+ α
T∑
t=1

(
∥xt − xt−1∥ − ∥x∗t − x∗t−1∥

)
=

1

2η

(
∥x1∥22 − ∥xT+1∥22 − 2⟨x1,x∗1⟩ + 2⟨xT+1,x∗T ⟩

)
+
1

η

T∑
t=2

⟨xt ,x∗t−1 − x∗t ⟩ +
η

2

T∑
t=1

∥дt ∥22

+ α
T∑
t=1

(
∥xt − xt−1∥ − ∥x∗t − x∗t−1∥

)
. (21)

The first inequality comes from (20). The third equality comes from expanding out the squared terms.

The forth equality comes from canceling out the telescoping terms. The fifth equality rearranges

the inner product to be a subtraction of x∗t instead of xt .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:25

Let D2 be the quantity such that ∥x1 − x2∥2 ≤ D2 : ∀{x1,x2} ∈ X. Without loss of generality,

assume that 0 ∈ X which means that ∀{x1,x2} ∈ X, both ∥x1∥2 ≤ D2 and ∥x2∥2 ≤ D2. From the

Cauchy–Schwarz inequality we have that ⟨x1,x2⟩ ≤ ∥x1∥2∥x2∥2 ≤ D2

2
. Also, since ∥x1 − x2∥2 ≤ D2,

∥x1 − x2∥22 ≤ D2

2

∥x1∥22 + ∥x2∥22 − 2⟨x1,x2⟩ ≤ D2

2

−2⟨x1,x2⟩ ≤ D2

2

⟨x1,x2⟩ ≥ −
D2

2

2

Therefore, we have that −D2

2

2
≤ ⟨x1,x2⟩ ≤ D2

2
. Apply this to the first terms of (21), we have:

RT (L) ≤
2D2

2

η
+
1

η

T∑
t=2

⟨xt ,x∗t−1 − x∗t ⟩ +
η

2

T∑
t=1

∥дt ∥22 + α
T∑
t=1

(
∥xt − xt−1∥ − ∥x∗t − x∗t−1∥

)
≤

2D2

2

η
+
D2

η

T∑
t=2

∥x∗t−1 − x∗t ∥2 +
η

2

T∑
t=1

∥дt ∥22 + α
T∑
t=1

(
∥xt − xt−1∥ − ∥x∗t − x∗t−1∥

)
≤ 2D2κ2

η
+
Dκ

η

T∑
t=2

∥x∗t−1 − x∗t ∥ +
η

2

T∑
t=1

∥дt ∥22 + α
T∑
t=1

(
∥xt − xt−1∥ − ∥x∗t − x∗t−1∥

)
≤ 2D2κ2

η
+

(
Dκ

η
− α

) T∑
t=1

∥x∗t − x∗t−1∥ +
η

2

T∑
t=1

∥дt ∥22 + α
T∑
t=1

∥xt − xt−1∥ (22)

The second inequality applies the Cauchy–Schwarz inequality. The third inequality comes from

the fact that ∥x ∥2 ≤ κ∥x ∥ : ∀x and that the diameter of the action space D is defined by the norm

∥ · ∥. The forth inequality adds
Dκ
η ∥x∗

1
− x0∥ and combines the terms with traveling distance of the

optimal solution.

As mentioned before, since we have that ∥PX(z) − x ∥2
2
≤ ∥z − x ∥2

2
, and κ∥x ∥ ≤ ∥x ∥2,

∥xt − xt−1∥ ≤ 1

κ
∥xt − xt−1∥2

=
1

κ
∥PX(xt−1 − ηдt−1) − xt−1∥2

≤ η

κ
∥дt−1∥2 (23)

Applying this to (22) we have:

RT (L) ≤
2D2κ2

η
+

(
Dκ

η
− α

) T∑
t=1

∥x∗t − x∗t−1∥ +
η

2

T∑
t=1

∥дt ∥22 +
ηα

κ

T∑
t=1

∥дt−1∥2

≤ 2D2κ2

η
+

(
Dκ

η
− α

) T∑
t=1

∥x∗t − x∗t−1∥ +
η

2

T∑
t=1

(
∥дt ∥22 +

2α

κ
∥дt ∥2

)
Without loss of generality let д0 := 0. The second inequality adds

ηα
κ ∥дT ∥2 and combines summa-

tions.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:26 J. Comden et al.

Now taking the definition of dynamic regret (4) we have

ROGD

T (L) = sup

y1:T
{RT (L)}

≤ 2D2κ2

η
+ L

(
Dκ

η
− α

)+
+ ηG

(
G

2

+
α

κ

)
T (24)

where (x)+ := max{0,x} is used to prevent the coefficient in front of the first summation from

being negative and since

∑T
t=1 ∥x∗t − x∗t−1∥ ≤ L and ∥дt ∥2 ≤ G which is from the fact that the

Lipschitz condition bounds the dual norm of the subgradient. �

A.2 Theorem 3
Proof. Define RT (BT ,L) as the dynamic regret without yet taking the supremum:

RT (BT ,L) :=
T∑
t=1

(f (xt ,yt) + α ∥xt − xt−1∥) −
T∑
t=1

(
f (x∗t ,yt) + α ∥x∗t − x∗t−1∥

)
=

T∑
t=1

(
f (xt , ŷt |t) + α ∥xt − xt−1∥

)
−

T∑
t=1

(
f (x∗t , ŷt |t) + α ∥x∗t − x∗t−1∥

)
+

T∑
t=1

(
f (xt ,yt) − f (xt , ŷt |t)

)
+

T∑
t=1

(
f (x∗t , ŷt |t) − f (x∗t ,yt)

)
≤ GL

η
+
Tα2η

2m
+ 2BT

= α

√
2GLT

m
+ 2BT

(
Set η =

√
2GLm

Tα2

)
The second equality comes from adding 0 = f (xt , ŷt |t) − f (xt , ŷt |t) and 0 = f (x∗t , ŷt |t) − f (x∗t , ŷt |t)
and swapping the true for the predicted cost functions. The inequality comes first from applying

Theorem 10 from [19] on the first two summations where the prediction is considered to be

error-free. On the last two summations separately, each has the absolute value taken and then the

supremum with respect to the each individual timeslot’s xt or x
∗
t followed by applying the error

budget definition (6). The last equality comes by setting η to be the specific value in the bracket to

the right. Taking the supremum on y ∈ Y1:1,T as defined by (8) gets the resultant. �

A.3 Theorem 4
Proof. Let xt1:t2 denote the sequence of vectors xt1 , ...,xt2 . Let the cost of an algorithm during

the sequence of timeslots {t1, ..., t2} with boundary conditions xS ,xE and cost function parameters

yt1:t2 be

H t1,t2 (x ;y,xS ,xE) =α
xt1 − xS

 + t2∑
τ=t1

f (xτ ,yτ) +
t2∑

τ=t1+1

α ∥xτ − xτ−1∥ + α
xE − xt2

 .
If xE is omitted, then xE := xt2 (and thus

xE − xt2
 = 0). If xS is omitted, then xS = xt1−1. Therefore,

H t1,t2 (x ;y) depends only on xt1−1, ...,xt2 .

We first analyze the dynamic regret for a single trajectory x (k)
1:T in Algorithm 4 before they are

averaged together. Let Mk be the number of times that (1 + (t − 1) mod v) = k is true for this

particular k and let

(
t (k),1, ..., t (k),Mk

)
be the timeslots for which it is true.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:27

From the optimality of x (k)
t (k),i :t (k),i+v−1 for its given predictions, we have that it minimizes

H t (k),i ,t (k),i+v−1

(
x (k); ŷ · |t (k),i ,x

(k)
t (k),i−1,x

(k)
E,v

)
where x (k)E,v := x (k)

t (k),i+v
if v < w and x (k)E,v := x (k)

t (k),i+w−1 if

v = w . Therefore,

α
x (k)t (k),i

− x (k)
t (k),i−1

 + t (k),i+v−1∑
τ=t (k),i

f
(
x (k)τ , ŷτ |t (k),i

)
+

t (k),i+v−1∑
τ=t (k),i+1

α
x (k)τ − x (k)τ−1

 + α x (k)E,v − x (k)
t (k),i+v−1

≤ α

x∗t (k),i − x (k)
t (k),i−1

 + t (k),i+v−1∑
τ=t (k),i

f
(
x∗τ ,yτ |t (k),i

)
+

t (k),i+v−1∑
τ=t (k),i+1

α
x∗τ − x∗τ−1

 + α x (k)E,v − x∗t (k),i+v−1

(25)

We construct a sequence of T-tuples (ξ (k),1, ..., ξ (k),Mk) consecutively so that ξ (k),iτ = x (k)τ for

τ ∈ {1, ..., t (k),i + v − 1} and ξ (k),iτ = x∗τ for τ ∈ {t (k),i + v, ...,T }. Thus, ξ (k),Mk = x (k)
1:T . We also

define another T-tuple ξ (k),0 := x∗
1:T . The sequence is constructed by the following process. At each

timeslot t (k),i , we replace the associated actions in ξ (k),i−1 with x (k)
t (k),i :t (k),i+v−1 to get:

ξ (k),i :=

(
ξ (k),i−1
1

, ..., ξ (k),i−1
t (k),i−1,x

(k)
t (k),i
, ...,x (k)

t (k),i−1+v , ξ
(k),i−1
t (k),i+v

, ..., ξ (k),i−1T

)
.

By examining the terms in ξ (k),i−1 and ξ (k),i , we have

H 1,T (ξ (k),i ;y) − H 1,T (ξ (k),i−1;y)

=

t (k),i+v−1∑
τ=t (k),i

(
f

(
x (k)τ ,yτ

)
− f

(
x∗τ yτ

))
+ α

t (k),i+v−1∑
τ=t (k),i+1

(x (k)τ − x (k)τ−1

 − x∗τ − x∗τ−1
)

+ α
x∗t (k),i+v − x (k)

t (k),i+v−1

 − α
x∗t (k),i+v − x∗t (k),i+v−1

 + α x (k)t (k),i
− x (k)

t (k),i−1

− α

x∗t (k),i − x (k)
t (k),i−1

≤

t (k),i+v−1∑
τ=t (k),i

(
f

(
x (k)τ ,yτ

)
− f

(
x (k)τ , ŷτ |t (k),i

))
+

t (k),i+v−1∑
τ=t (k),i

(
f

(
x∗τ , ŷτ |t (k),i

)
− f

(
x∗τ ,yτ

))
+ α

x∗t (k),i+v − x (k)
t (k),i+v−1

 − α
x∗t (k),i+v − x∗t (k),i+v−1

 + α x (k)E,v − x∗t (k),i+v−1

− α

x (k)E,v − x (k)
t (k),i+v−1

≤

t (k),i+v−1∑
τ=t (k),i

(
f

(
x (k)τ ,yτ

)
− f

(
x (k)τ , ŷτ |t (k),i

))
+

t (k),i+v−1∑
τ=t (k),i

(
f

(
x∗τ , ŷτ |t (k),i

)
− f

(
x∗τ ,yτ

))
+ 2α

x (k)t (k),i+v−1 − x∗t (k),i+v−1

 (26)

where the first inequality comes from applying (25), and the second inequality comes from applying

the triangle inequality.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:28 J. Comden et al.

Summing up the final inequality from i = 1 to i = Mk and noting that ξ (k),0 = x∗ and ξ (k),Mk =

x (k), we have

cost

(
x (k)
1:T ,y1:T

)
≤ cost (OPTL,y1:T) +

Mk∑
i=1

t (k),i+v−1∑
τ=t (k),i

(
f

(
x (k)τ ,yτ

)
− f

(
x (k)τ , ŷτ |t (k),i

))
+

Mk∑
i=1

t (k),i+v−1∑
τ=t (k),i

(
f

(
x∗τ , ŷτ |t (k),i

)
− f

(
x∗τ ,yτ

))
+ 2α

Mk∑
i=1

x (k)t (k),i+v−1 − x∗t (k),i+v−1

(27)

Since xCHCt is determined by averaging x (1)t , . . . ,x
(v)
t in Algorithm 4 and (3) is convex, then

Jensen’s inequality can be applied to get

cost (CHC,y1:T) ≤
1

v

v∑
k=1

cost

(
x (k)
1:T ,y1:T

)
= cost(OPTL,y1:T) +

1

v

v∑
k=1

Mk∑
i=1

t (k),i+v−1∑
τ=t (k),i

(
f

(
x (k)τ ,yτ

)
− f

(
x (k)τ , ŷτ |t (k),i

))
+

1

v

v∑
k=1

Mk∑
i=1

t (k),i+v−1∑
τ=t (k),i

(
f

(
x∗τ , ŷτ |t (k),i

)
− f

(
x∗τ ,yτ

))
+
2α

v

v∑
k=1

Mk∑
i=1

x (k)t (k),i+v−1 − x∗t (k),i+v−1

= cost (OPTL,y1:T)

+
1

v

T∑
t=1

v∑
j=1

(
f

(
x (1+(t−j) mod v)
t ,yt |1+t−j

)
− f

(
x (1+(t−j) mod v)
t , ŷt |1+t−j

))
+

1

v

T∑
t=1

v∑
j=1

(
f

(
x∗t , ŷt |1+t−j

)
− f

(
x∗t ,yt |1+t−j

))
+
2α

v

T∑
t=1

x (1+(t−v) mod v)
t − x∗t

≤ cost (OPTL,y1:T)

+
1

v

T∑
t=1

v∑
j=1

���f (
x (1+(t−j) mod v)
t ,yt |1+t−j

)
− f

(
x (1+(t−j) mod v)
t , ŷt |1+t−j

) ���
+

1

v

T∑
t=1

v∑
j=1

��f (
x∗t , ŷt |1+t−j

)
− f

(
x∗t ,yt |1+t−j

) ��
+

2

v

T∑
t=1

x (1+(t−v) mod v)
t − x∗t

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

Online Optimization in Cloud Resource Provisioning 16:29

≤ cost (OPTL,y1:T) +
2

v

v∑
j=1

Bj,T +
2α

v

T∑
t=1

x (1+(t−v) mod v)
t − x∗t

≤ cost (OPTL,y1:T) +

2

v

v∑
j=1

Bj,T +
2DαT

v
(28)

The second equality is the first equality with the indexes renamed. This comes from that every

timeslot t ∈ {1, ...,T } is counted exactly once by t (k),i in the summation

∑v
k=1

∑Mk
i=1, and that

1 + t − j ∈
{
t (1+(t−j) mod v),1, . . . , t (1+(t−j) mod v),M(1+(t−j) mod v)

}
for all t ∈ {1, ...,T } and j ∈ {1, ...,v}.

The second inequality comes from applying the error budget (7) j steps ahead. The last inequality

comes from the fact that

x (k)t − x∗t

 ≤ D. Subtracting off the cost (OPTL,y1:T) off of both sides,

gives the dynamic regret. �

A.4 Theorem 5
Proof. We analyze a single trajectory x (k)

1:T in Algorithm 4 before they are averaged together.

Let Mk be the number of times that (1 + (t − 1) mod v) = k is true for this particular k and

let

(
t (k),1, ..., t (k),Mk

)
be the timeslots for which it is true. Also, suppose that X = [0,D], x0 = 0,

f (xt ,yt) = α
w+1 |xt −yt |, yt = D : ∀t ∈ {1, . . . ,T }, the norm is the absolute value, and CHC receives

the true cost functions as its predictions for the nextw timeslots into the future. At timeslot t (k),i ,
CHC solves the following problem:

min

{xt , ...,xt−1+w }∈[0,D]

t−1+w∑
τ=t

(α

w + 1
|xτ − D | + α |xτ − xτ−1 |

)
. (29)

From Lemma 6, all decisions in its decision trajectory will be equal to x (k)t−1. Since trajectories

x (k)
1:T : ∀k ∈ {1, . . . ,v} initialize at x0 = 0, then all decisions in its trajectory will remain at x0 = 0.

Therefore, after averaging we have that xCHCt = 0 : ∀t ∈ {1, . . . ,T }. Another possible solution is to

go to D and remain there, i.e. x̃t = D : ∀t ∈ {1, . . . ,T }.
This gives us the following lower bound on dynamic regret:

RCHC

T (0,L) ≥
T∑
t=1

(α

w + 1

��xCHCt − D
�� + α ��xCHCt − xCHCt−1

��) − T∑
t=1

(α

w + 1

��x∗t − D
�� + α ��x∗t − x∗t−1

��)
≥

T∑
t=1

(α

w + 1

��xCHCt − D
�� + α ��xCHCt − xCHCt−1

��) − T∑
t=1

(α

w + 1
|x̃t − D | + α |x̃t − x̃t−1 |

)
=

T∑
t=1

α

w + 1
D − αD

=
α

w + 1
DT − αD. (30)

The first inequality comes from applying a specific set of cost functions. The second inequality

comes from x̃ being no better than the optimal solution. The third equality comes from applying

the values xt := xCHCt = 0 and x̃t for all t ∈ {1, . . . ,T }. Rearranging the last expression gives the

resultant. �

Lemma 6. The optimal solution to (29) is xτ = xt−1 : ∀τ ∈ {t , . . . , t − 1 +w}.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

16:30 J. Comden et al.

Proof. We can rewrite Problem (29) into the following dynamic programming structure, ∀τ ∈
{t , . . . , t − 1 +w}:

hτ (xτ−1) := min

xτ ∈[0,D]

{ α

w + 1
|xτ − D | + α |xτ − xτ−1 | + hτ+1(xτ)

}
(31)

where ht+w (·) := 0.

We will solve the dynamic program by induction. Let the induction hypothesis for its optimal

solution be, ∀i ∈ {1, . . . ,w}:
x∗t+w−i = xt+w−i−1

ht+w−i (xt+w−i−1) =
αi

w + 1
|xt+w−i−1 − D |

where x∗τ is the optimal solution to hτ (xτ−1).
The base case starting at i = 1, gives the following problem:

ht+w−1(xt+w−2) = min

xt+w−1∈[0,D]

{ α

w + 1
|xt+w−1 − D | + α |xt+w−1 − xt+w−2 |

}
.

In order for x∗t+w−1 to be optimal, it must satisfy the first-order stationary condition which is that

0 is in its subgradient. Since w ≥ 1, then only xt+w−1 = xt+w−2 allows 0 to be in its subgradient

which makes it optimal. Also, when xt+w−1 = xt+w−2, then

ht+w−1(xt+w−2) =
α

w + 1
|xt+w−2 − D |.

Therefore, the induction hypothesis is true for the base case.

For any i ∈ {1, . . . ,w} and the applying induction hypothesis at i − 1 to ht+w−i+1(xt+w−i), we
have that:

ht+w−i (xt+w−i−1) = min

xt+w−i ∈[0,D]

{ αi

w + 1
|xt+w−i − D | + α |xt+w−i − xt+w−i−1 |

}
.

As before, the only value that makes xt+w−i optimal by allowing 0 to be in the subgradient is at

xt+w−i = xt+w−i−1. At xt+w−i = xt+w−i−1, then

ht+w−i (xt+w−i−1) =
αi

w + 1
|xt+w−i − D |.

This finishes the proof of induction. The lemma’s statement is implied by the induction hypothesis.

�

Received November 2018; revised December 2018; accepted January 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 16. Publication date: March 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Model
	3.2 Online Optimization
	3.3 Prediction Error Model

	4 Online Algorithms
	4.1 No Predictions
	4.2 Utilizing Single-step Predictions
	4.3 Utilizing Multi-step Predictions
	4.4 Algorithm Selection

	5 Virtual Machine Prediction
	5.1 The MS Azure Dataset
	5.2 Analysis of Empirical Prediction Error
	5.3 Error Budget Modeling

	6 Performance Evaluation
	6.1 Setup
	6.2 Results

	7 Conclusion
	8 Acknowledgments
	References
	A Proofs
	A.1 Theorem 1
	A.2 Theorem 3
	A.3 Theorem 4
	A.4 Theorem 5

