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Navid Azizan Ruhi?, Krishnamurthy Dvijotham?, Niangjun Chen, and Adam Wierman

Abstract—Aggregators of distributed generation are playing an
increasingly crucial role in the integration of renewable energy
in power systems. However, the intermittent nature of renewable
generation makes market interactions of aggregators difficult to
monitor and regulate, raising concerns about potential market
manipulation by aggregators. In this paper, we study this issue
by quantifying the profit an aggregator can obtain through
strategic curtailment of generation in an electricity market.
We show that, while the problem of maximizing the benefit
from curtailment is hard in general, efficient algorithms exist
when the topology of the network is radial (acyclic). Further,
we highlight that significant increases in profit are possible via
strategic curtailment in practical settings.

Index Terms—Aggregators, renewables, optimal curtailment,
market power, locational marginal price (LMP).

I. INTRODUCTION

Increasing the penetration of distributed, renewable energy
resources into the electricity grid is a crucial part of building
a sustainable energy landscape. To date, the entities that
have been most successful at promoting and facilitating the
adoption of renewable resources have been aggregators, e.g. as
SolarCity, Tesla, Enphase, Sunnova, SunPower, ChargePoint
[1]–[3]. These aggregators install and manage rooftop solar
installations as well as household energy storage devices
and electric vehicle charging systems. Some have fleets with
upwards of 800 MW distributed energy resources [4], [5], and
the market is expected to triple in size by 2020 [6], [7].

Aggregators play a variety of important roles in the con-
struction of a sustainable grid. First, and foremost, they are on
the front lines of the battle to promote installation of rooftop
solar and household energy storage, pushing for wide-spread
adoption of distributed energy resources by households and
businesses. Second, and just as importantly, they provide a
single interface point where utilities and Independent System
Operators (ISOs) can interact with a fleet of distributed energy
resources across the network in order to obtain a variety
of services, from renewable generation capacity to demand
response. This service is crucial for enabling system opera-
tors to manage the challenges that result from unpredictable,
intermittent renewable generation, e.g., wind and solar.

However, in addition to the benefits they provide, aggrega-
tors also create new challenges – both from the perspective of
the aggregator and the perspective of the system operator. On
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the side of the aggregator, the management of a geographically
diverse fleet of distributed energy resources is a difficult
algorithmic challenge. On the side of the operator, the partic-
ipation of aggregators in electricity markets presents unique
challenges in terms of monitoring and mitigating the potential
of exercising market power. In particular, unlike traditional
generation resources, the ISO cannot verify the availability
of the generation resources of aggregators. While the repair
schedule of a conventional generator can be made public, the
downtime of a solar generation plant and the times when solar
generation is not available cannot be scheduled or verified
after the fact. Thus, aggregators have the ability to strategically
curtail generation resources without the knowledge of the ISO,
and this potentially creates significant opportunities for them
to manipulate prices.

These issues are particularly salient given current proposals
for distribution systems. Distribution systems (which are typi-
cally radial networks) are heavily impacted by the introduction
of distributed energy resources. As a result, there are a variety
of current proposals to start distribution-level power markets
(see, for example [8] [9]), operated by Distribution System
Operators (DSOs). A future grid may even involve a hierarchy
of system operators dealing with progressively larger areas, net
load and net generation. In such a scenario, aggregators could
end up having a significant proportion of the market share,
and such markets may be particularly vulnerable to strategic
bidding practices of the aggregators. Thus, understanding the
potential for these aggregators to exercise market power is
of great importance, so that regulatory authorities can take
appropriate steps to mitigate it as needed.

A. Summary of Contributions

This paper addresses both the algorithmic challenge of
managing an aggregator and the economic challenge of mea-
suring the potential for an aggregator to manipulate prices.
Specifically, this work provides a new algorithmic framework
for managing the participation of an aggregator in electricity
markets, and uses this framework to evaluate the potential for
aggregators to exercise market power. To those ends, the paper
makes three main contributions.

First, we introduce a new model for studying the market
behavior of aggregators of distributed generation (renewables)
in the real-time market.

Second, we quantify opportunities for price manipulation
(via strategic curtailment) by the aggregators. Our results
highlight that, in practical scenarios, strategic curtailment can
have a significant impact on prices, and yield much higher
profits for the aggregators. In particular, the prices can be
impacted up to a few tens of $/MWh in some cases, and there
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is often more than 25% higher profit, even with curtailments
limited to 1%.

Third, we provide a novel algorithm for managing the
participation of an aggregator in the market. The problem is
NP-hard in general and is a bilevel quadratic program, which
are notoriously difficult in practice. However, we develop an
efficient algorithm that can be used by the aggregators in radial
networks to approximate the optimal curtailment strategy and
maximize their profit (Section V). Note that the algorithm
is not just relevant for aggregators; it can also be used by
the operator to assess the potential for strategic curtailment.
The key insight in the algorithm is that the optimization
problem can be decomposed into “local” pieces and be solved
approximately using a dynamic programming over the graph.
We also provide an exact algorithm for the case of single-bus
aggregators in general networks.

Further, our results expose a connection between the profit
achievable via curtailment and a new market power measure
introduced in [10], which is discussed in Appendix A.

B. Related Work

This paper connects to, and builds on, work in four related
areas: 1) Quantifying and mitigating market power, 2) Cyber-
attacks in the grid, 3) Algorithms for managing distributed
energy resources, and 4) Algorithms for bilevel programs.

1) Quantifying market power in electricity markets: There
is a large volume of literature that focuses on identifying
and measuring market power for generators in an electricity
market, see [11] for a recent survey.

Early works on market power analysis emerged from mi-
croeconomic theory suggest measures that ignore transmission
constraints. For example, [12] introduced the pivotal supplier
index (PSI), which is a binary value indicating whether the
capacity of a generator is larger than the supply surplus, [13]
later refined PSI by proposing residential supply index (RSI).
RSI is used by the California ISO to assure price competitive-
ness [14]. The electricity reliability council of Texas uses the
element competitiveness index (ECI) [15], which is based on
the Herfindahl-Hirschmann index (HHI) [16].

Market power measures considering transmission con-
straints have emerged more recently. Some examples include,
e.g., [17]–[21], and [22]. Interested readers can refer to [23],
which proposes a functional measure that unifies the structural
indices measuring market power on a transmission constrained
network in the previous work.

In contrast to the large literature discussed above, the
literature focused on market power of renewable generation
producers is limited. Existing works such as [10] and [24]
study market power of wind power producers ignoring trans-
mission constraints. The key differentiator of the work in this
paper is that the use of the Locational Marginal Price (LMP)
framework, which is standard practice in the electricity market
[25], [26], allows this work to offer insight about market power
of aggregators when transmission capacity is limited.

2) Cyber-attacks in the grid: The model and analysis in this
paper is also strongly connected to the cyber security research
community, which has studied how and when a malicious

party can manipulate the spot price in electricity markets by
compromising the state measurement of the power grid via
false data injection, e.g., see [27]–[31].

In particular, [29], [30] shows that if a malicious party can
corrupt sensor data, then it can create an arbitrage opportunity.
Further, [27] shows that such attacks can impact both the real
time spot price and future prices by causing line congestions.

In this paper, we do not allow aggregators to corrupt the
state measurements of the power system, rather we consider
a perfectly legal approach for price manipulation: strategic
curtailment. However, strategic curtailment in the ex-post
market can gain extra profit to the detriment of the power
system, which is a similar mechanism to those highlighted
in cyber attack literature. Technically, the work in this paper
makes significant algorithmic contributions to the cyber-attack
literature. In particular, the papers mentioned above focus on
algorithmic heuristics and do not provide formal guarantees.
In contrast, our work presents a polynomial-time algorithm
that provably maximizes the profit of the aggregator.

3) Algorithms for managing distributed energy resources:
There has been much work studying optimal strategies for
managing demand response and distributed generation re-
sources to offer regulation services to the power grid. This
work covers a variety of contexts. For example, researchers
have studied frequency regulation [32] [33] and voltage reg-
ulation (or volt-VAR control) [34] [35]. A separate line of
work has been work on designing incentives to encourage
distributed resources to provide services to the power grid [36]
[37]. However, the current paper is distinct from all the work
above in that we study strategic behavior by an aggregator of
distributed resources. Prior work does not model the strategic
manipulation of prices by the aggregator.

4) Algorithms for bilevel programs: The optimization prob-
lem that the strategic aggregator solves is a bilevel program,
since the objective (aggregator’s profit) depends on the loca-
tional prices (LMPs). The LMPs are constrained to be equal to
optimal dual variables arising from economic dispatch-based
market clearing procedure. These types of problems have
been extensively studied in the literature, and fall under the
class of Mathematical Programs with Equilibrium Constraints
(MPECs) [38]. Even if the optimization problems at the two
levels is linear, the problem is known to be NP-hard [39].
Global optimization algorithms [40] can be used to solve this
problems to arbitrary accuracy (compute a lower bound on the
objective within a specified tolerance of the global optimum).
However, these algorithms use a spatial branch and bound
strategy, and can take exponential time in general. In contrast,
solvers like PATH [41], while practically efficient for many
problems, are only guaranteed to find a local optimum. In this
paper, we show that for tree-structured networks (distribution
networks), an ε-approximation of the global optimum can
be computed in time linear in the size of the network and
polynomial in 1

ε .

II. SYSTEM MODEL

In this section we define the power system model that serves
as the basis for the paper and describe how we model the way
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the Independent System Operator (ISO) computes the Loca-
tional Marginal Prices (LMPs). Locational marginal pricing is
adopted by the majority of power markets in the Unites States
[26], and our model is meant to mimic the operation of two-
stage markets like ISO New England, PJM Interconnection,
and Midcontinent ISO, that use ex-post pricing strategy for
correcting the ex-ante prices [25], [26].

A. Preliminaries

We consider a power system with n nodes (buses) and t
transmission lines. The generation and load at node i are
denoted by pi and di respectively, with p =

[
p1, . . . , pn

]T
and d =

[
d1, . . . , dn

]T
. We use [n] to denote the set of buses

{1, . . . , n}.
The focus of this paper is on the behavior of an aggregator in

the real-time market, which owns generation capacity, possibly
at multiple nodes. We assume that the aggregator has the
ability to curtail generation, e.g. by curtailing the amount of
wind/solar generation or by not calling on demand response
opportunities, without penalty. This is because in many of
today’s markets the renewable generation (e.g. solar) can be
sold at the real-time price without having to commit to the ex-
ante market (See for example CAISO Participating Intermittent
Resource Program (PIRP) [42]). Let Na ⊆ [n] be the nodes
where the aggregator has generation and denote its share of
generation at node i ∈ Na by pai (out of pi). The curtailment of
generation at this node is denoted by αi, where 0 ≤ αi ≤ pai .
We define our model for the decision making process of the
aggregator with respect to curtailment in Section III.

Together, the net generation delivered to the grid is repre-
sented by p−α, where αj = 0 ∀j 6∈ Na. The flow of lines is
denoted by f =

[
f1, . . . , ft

]T
, where fl represents the flow of

line l: f = G(p− α− d), where G ∈ Rt×n is the matrix of
generation shift factors [43]. We also define B ∈ Rn×t as the
link-to-node incidence matrix that transforms line flows back
to the net injections as p− α− d = Bf.

B. Real-Time Market Price

For every dispatch interval, the ISO obtains the current val-
ues of generation, demands and flows from the state estimator,
in real time. Based on this information, it solves a constrained
optimization problem for market clearing. The objective of
the optimization is to minimize the total cost of the network,
based on the current state of the system. The ex-post LMPs are
announced as a function of the optimal Lagrange multipliers
of this optimization. Mathematically, the following program
has to be solved.

minimize
f

cTBf (1a)

subject to

λ−, λ+ : ∆p ≤ Bf − p+ α+ d ≤ ∆p (1b)

µ−, µ+ : f ≤ f ≤ f (1c)

ν : f ∈ range(G) (1d)

In the above, ci is the offer price for the generator i. fl is
the desired flow of line l, and Bf = p+ ∆p− α− d, where

∆pi is the desired amount of change in the generation of
node i. Constraint (1b) enforces the upper and lower limits
on the change of generations, and constraint (1c) keeps the
flows within the line limits. In practice, ∆p

i
and ∆pi are

usually set to be a constant value for all i (e.g. ∆p
i

= −2

and ∆pi = 0.1, ∀i [44, p. 100]). The last constraint ensures
that fl are valid flows, i.e. f = Gp̃ for some generation p̃.
Variables λ−, λ+ ∈ Rn+, µ−, µ+ ∈ Rt+ and ν ∈ Rt−rank(G)

denote the Lagrange multipliers (dual variables) corresponding
to constraints (1b), (1c) and (1d).

Note that the ISO does not physically redispatch the gener-
ations, and the optimal values of the above program are just
the desired values. In fact, by announcing the (ex-post) LMPs,
the ISO provides incentives for the generators to adjust their
generation according to its goals [26].

Definition 1. The ex-post locational marginal price (LMP)
of node i at curtailment level of α, denoted by λi(α), is

λi(α) = ci + λ+i (α)− λ−i (α). (2)

We assume that the LMPs are unique. Non-uniqueness of
LMPs happens only under very special degenerate conditions,
and can be fixed in practice by adding a quadratic penalty term
to the objective to make it convex [45].

III. THE MARKET BEHAVIOR OF THE AGGREGATOR

The key feature of our model is the behavior of the
aggregator. As mentioned before, aggregators have generation
resources at multiple locations in the network and can often
curtail generation resources without the knowledge of the ISO.
Of course, such curtailment may not be in the best interest of
the aggregator, since it means offering less generation to the
market. But, if through curtailment, prices can be impacted,
then the aggregator may be able to receive higher prices for
the generation offered or make money through arbitrage of the
price differential.

To quantify the profit that the aggregator makes due to the
curtailment, let us take a look at the total revenue in different
production levels.

Definition 2. We define the curtailment profit (CP) as the
change in profit of the aggregator as a result of curtailment:

γ(α) =
∑
i∈Na

(λi(α) · (pai − αi)− λi(0) · pai ) (3)

Note that the curtailment profit can be positive or negative
in general. We say a curtailment level α > 0 is profitable if
γ(α) is strictly positive.

The curtailment profit is important for understanding when
it is beneficial for the aggregators to curtail. Note that we are
not concerned about the cost of generation here, as renewables
have zero marginal cost. However, if there is a cost for
generation, then that results in an additional profit during
curtailment, which makes strategic curtailment more likely.

While our setup may seem divorced from the notion of mar-
ket power, it turns out that there is a fundamental relationship
between the curtailment profit introduced above and market
power. See Appendix A for details.
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A. A Profit-Maximizing Aggregator

A natural model for a strategic aggregator is one that
maximizes curtailment profit subject to LMPs and curtailment
constraints. Since LMPs are the solution to an optimization
problem themselves, the aggregator’s problem is a bilevel
optimization problem. In order to be able to express this
optimization in an explicit form, let us first write the KKT
conditions of the program (1).

Primal feasibility:

∆p ≤ Bf − p+ α+ d ≤ ∆p (4a)

f ≤ f ≤ f (4b)

Hf = 0 (4c)

Dual feasibility:

λ−, λ+, µ−, µ+ ≥ 0 (4d)

Complementary slackness:

λ+i ((Bf)i − pi + αi + di −∆pi) = 0, i = 1, . . . , n (4e)

λ−i (∆p
i
− (Bf)i + pi − αi − di) = 0, i = 1, . . . , n (4f)

µ+
l (fl − f l) = 0, l = 1, . . . , t (4g)

µ−l (f
l
− fl) = 0, l = 1, . . . , t (4h)

Stationarity:

BT (c+ λ+ − λ−) + µ+ − µ− +HT ν = 0. (4i)

Here H ∈ R(t−rank(G))×t, and the range of G is the nullspace
of H .

Using the KKT conditions derived above, the aggregator’s
problem can be formulated as follows.

γ∗ = maximize
α,f,λ−,λ+,µ−,µ+,ν

γ(α) (5a)

subject to
0 ≤ αi ≤ pai , i ∈ Na (5b)
αj = 0, j 6∈ Na (5c)
(4) (5d)

The objective (5a) is the curtailment profit defined in (3).
Constraints (5b) and (5c) indicate that the aggregator can
only curtails generation at its own nodes, and the amount of
curtailment cannot exceed the amount of generation available
to it. Constraints (5d), which are the KKT conditions, enforce
the locational marginal pricing adopted by the ISO. Note that
if there is a curtailment limit above which e.g. curtailment can
be detected by the ISO, one can simply replace pai in (5b) by
min{pai , τi} to account for it.

An important note about this problem is that we have as-
sumed the aggregator has complete knowledge of the network
topology (G), and state estimates (p and d). This is, perhaps,
optimistic; however one would hope that the market design
is such that aggregators do not have profitable manipulations
even with such knowledge. The results in this paper indicate
that this is not the case.
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Fig. 1. The 6-bus example network from [27], used to illustrate the effect of
curtailment.

IV. THE IMPACT OF STRATEGIC CURTAILMENT

In this section, we demonstrate the potential impact of
strategic curtailment in practical settings. We first provide
an illustrative example of how curtailment leads to a larger
profit for a simple single-bus aggregator in a small, 6-bus,
network. Then we show the effect of strategic curtailment in
more realistic settings, using IEEE 14-, 30-, and 57-bus test
cases and their enhanced versions from NICTA Energy System
Test case Archive [46].

A. An Illustrative Example

Fig. 1 shows a 6-bus example network from [27], in which
the amounts of generation are 375.20, 73.00, 299.60, 84.80,
250.00, 397.40 MW . The loads and the original offer prices
for the generators are shown in the figure. At the normal con-
ditions, the lines l12, l14 and l56 are carrying their maximum
flow, and the real-time LMPs are 20.0, 25.0, 25.0, 35.0, 28.7,
24.0 $/MWh, respectively.

Assume that the aggregator owns node 1 and aims to
increase its profit by curtailing the generation at this node.
It can be seen that by curtailing just 0.15 MW generation
at node 1 (i.e. from 375.20 MW to 375.05 MW ), the
binding/non-binding constraints in problem (1) change, and
as a result the ISO will determine the new LMPs as 25.8,
25.0, 25.0, 35.0, 30.6, 24.0 $/MWh. Fig. 2 shows the LMPs,
before and after the curtailment. In this case, the curtailment
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Fig. 2. The locational marginal prices for the 6-bus example before and after
the curtailment.
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Fig. 3. The profit under the normal (no-curtailment) condition and under (optimal) strategic curtailment, as a function of size of the aggregator in IEEE test
case networks: a) IEEE 14-Bus Case, b) IEEE 30-Bus Case, and c) IEEE 57-Bus Case. The difference between the two curves is the curtailment profit.

profit is γ = 25.8× 375.05− 20× 375.20 = 2172 $/h ,which
means that the aggregator has been able to increase its profit
by 2172 $/h during that dispatch interval.

B. Case Studies

We simulate the behavior of aggregators with different
sizes, i.e. different number of buses, in a number of different
networks. We use the IEEE 14-, 30-, and 57-bus test cases.
Since studying market manipulation makes sense only when
there is congestion in the network, we scale the demand (or
equivalently the line flow limits) until there is some congestion
in the network. In order to examine the profit and market
power of aggregator as a function of its size, we assume that
the way aggregator grows is by sequentially adding random
buses to its set (more or less like the way e.g. a solar firm
grows). Then at any fixed set of buses, it can choose different
curtailment strategies to maximize its profit. In other words,
for each of its nodes it should decide whether to curtail or
not (assuming that the amount of curtailment has been fixed
to a small portion). We assume that the total generation of the
aggregator in each bus is 10 MW and it is able to curtail 1%
of it (0.1 MW ).

For each of the three networks, Fig. 3 shows the profit for
a random sequence of nodes. Comparing the no-curtailment
profit with the strategic-curtailment profit reveals an interesting
phenomenon. As the size of the aggregator (number of its
buses) grows, not only does the profit increase (which is
expected), but also the difference between the two curves in-
crease, which is the “curtailment profit.” More specifically, the
latter does not need to happen in theory. However in practice,
it is observed most of the time, and it highlights that larger
aggregators have higher incentive to behave strategically, and
they can indeed gain more from curtailment.

The other important question is what is the impact of
strategic curtailment on the price of each bus of the network
(not necessarily just the aggregator’s buses). This is important
in many scenarios like the effect of such coordinated manipu-
lations on consumers or the effect of competing firms on each
other. Fig. 4 shows a heat map of an aggregator’s impact on
the prices in the IEEE 14-bus network. As one can see, the
price of other buses can often be highly impacted as well.

IEEE 14-bus network

The aggregator

Fig. 4. A heat map of the impact of coordinated curtailment on the prices in
the IEEE 14-bus network. Aggregator nodes are 2, 7, 10, and 14.

V. OPTIMIZING CURTAILMENT PROFIT

The aggregator’s profit maximization problem is challenging
to analyze, as one would expect given its bilevel form. In fact,
bilevel linear programming is NP-hard to approximate up to
any constant multiplicative factor in general [47]. Furthermore,
the objective of the program (5) is quadratic (bilinear) in the
variables, rather than linear. This combination of difficulties
means that we cannot hope to provide a complete analytic
characterization of the behavior of a profit maximizing aggre-
gator.

In this section, we begin with the case of a single-bus ag-
gregator and build to the case of general multi-bus aggregators
in acyclic networks. For the single-bus aggregator, the optimal
curtailment can be found exactly, in polynomial time. For the
general case, we cannot provide an exact algorithm, but we
do provide a practical approximation algorithm for general
multi-bus aggregators in acyclic networks (e.g. distribution
networks).

A. An Exact Algorithm for Single-Node Aggregators in Arbi-
trary Networks

Even in the simplest case, when the aggregator has only a
single node, i.e. its entire generation is located in a single
bus, it is not trivial how to solve the aggregator’s profit
maximization problem.

The first step toward solving the problem is already difficult.
In particular, in order to understand the effect of curtailment
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Fig. 5. The LMP at bus i as a function of curtailed generation at that bus.
Shaded areas indicate the aggregator’s revenue at the normal condition and
at the curtailment.

on the profit, we first need to understand how does curtailment
impact the prices – an impact which is not monotonic in
general. Although LMPs are not monotonic in general, it
turns out that in single-bus curtailment, the LMP is indeed
monotonic with respect to the curtailment. The proof of the
following lemma is in Appendix B.

Lemma 1. The LMP of any bus i is monotonically increasing
with respect to the curtailment at that bus. That is

λi(α
′) ≥ λi(α)

if α′i > αi, and α′j = αj for all j = [n]\{i}.

A consequence of the above lemma is that the price λi
is a monotonically increasing staircase function of αi, for
any bus i, as depicted in Fig. 5. As αi increases, if the
binding constraints of (1) do not change, the dual variables
remain the same, and thus the LMPs remain the same (constant
intervals). Once a constraint becomes binding/non-binding, the
LMP jumps to the next level.

In Fig. 5, the two shaded areas show profit at the normal
condition and at the curtailment. The difference between the
two areas is the curtailment profit. In particular, if the red
area is larger than the blue one, the aggregator is able to earn
a positive curtailment profit on bus i. The optimal curtailment
α∗i also happens where the red area is maximized. It should be
clear that the optimal curtailment always happens at the verge
of a price change, not in the middle of a constant interval
(otherwise it can be increased by curtailing less).

Given the knowledge of the network and state estimates, it
is possible to find the jump points (i.e. where the binding con-
straints change) and evaluate them for profitability. Therefore,
if there are not too many jumps, an exhaustive search over the
jump points can yield the optimal curtailment. Based on this
observation, we have the following theorem, which is proven
in Appendix C.

Theorem 2. The exact optimal curtailment for an aggregator
with a single bus, in an arbitrary network with t lines, can be
found by an algorithm with running time O(t3.373).

Clearly, this approach does not extend to large multi-bus
aggregators. The following section uses a different and more
sophisticated algorithmic approach for that setting.

B. An Approximation Algorithm for Multi-Bus Aggregators in
Radial Networks

In this section, we show that the aggregator profit max-
imization problem, while hard in general, can be solved in
an approximate sense to determine an approximately-feasible
approximately-optimal curtailment strategy in polynomial time
using an approach based on dynamic programming. In par-
ticular, we show that an ε-approximation of the optimal
curtailment profit can be obtained using an algorithm with
running time that is linear in the size of the network and
polynomial in 1

ε .
Before we state the main result of this section, we introduce

the notion of an approximate solution to (5) in the following
definition.

Definition 3. A solution (α, f, λ−, λ+, µ−, µ+, ν) to (5) is an
ε-accurate solution if the constraints are violated by at most
ε and γ (α) ≥ γ∗ − ε.

Note that, if one is simply interested in approximating γ∗

(as a market regulator would be), the ε-constraint violation is
of no consequence, and an ε-accurate solution of (5) suffices
to compute an ε-approximation to γ∗.

Given the above notion of approximation, our main theorem
is as follows (proof in Appendix D):

Theorem 3. An ε-accurate solution to the optimal aggregator
curtailment problem (5) for an n-bus radial network can be
found by an algorithm with running time cn

(
1
ε

)9
where c is

a constant that depends on the parameters pai , B, d, p, f , f .
On a linear (feeder line) network, the running time reduces to
cn
(
1
ε

)6
.

We now give an informal description of the approximation
algorithm. Consider a radial distribution network with nodes
labeled i ∈ [n], (where 1 denotes the substation bus, where
the radial network connects to the transmission grid). Radial
distribution networks have a tree topology (they do not have
cycles). We denote bus 1 as the root of the tree, and buses
with only one neighbor as leaves. Every node (except the root)
has a unique parent, defined as the first node on the unique
path connecting it to the root node. The set of nodes k that
have a give node i as its parent are said to be its children. It
can be shown that the strategic curtailment problem on any
radial distribution network can be expressed as an equivalent
problem on a network where each node has maximum degree
3 (known as a binary tree, see Appendix D). Thus, we can
limit our attention to networks of this type, where every node
has a unique parent and at most 2 children.

For a node i, let c1 (i) , c2 (i) denote its children (where
c1 = ∅, c2 = ∅ is allowed since a node can have fewer than
two children). We use the shorthand

pnet (i) = fc1(i) + fc2(i) − fi − (pi − αi − di) .

Constraint (4a) reduces to ∆p
i
≤ pnet (i) ≤ ∆pi, where f1 =

0 and f∅ = 0. The matrix H in (4c) is an empty matrix (the
nullspace of the matrix B is of dimension 0), so this constraint
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can be dropped. Using this additional structure, the problem
(5) can be rewritten (after some algebra) as:

maximize
λ,f,α

n∑
i=1

λi (pai − αi) (6a)

subject to
0 ≤ αi ≤ pai , i ∈ [n] (6b)

∆p
i
≤ pnet (i) ≤ ∆pi, i ∈ [n] (6c)

f
i
≤ fi ≤ f i, i ∈ [n] \ {1} (6d)

λi


≤ ci, if pnet (i) = ∆p

i

= ci, if ∆p
i
< pnet (i) < ∆pi

≥ ci, if pnet (i) = ∆pi

, i ∈ [n] (6e)

λcj(i) − λi


≥ 0, if fi = f

i

= 0, if f
i
< fi < f i

≤ 0, if fi = f i

, i ∈ [n], j = 1, 2 (6f)

where λi is the LMP at bus i. Note that we assumed that
there is some aggregator generation and potential curtailment
at every bus (however this is not restrictive, since we can
simply set pai = 0 at buses where the aggregator owns no
assets).

Define xi = (λi, fi, αi), it is easy to see that (6) is of the
form

max
x

n∑
i=1

gi(xi)

s.t. hi
(
xi, xc1(i), xc2(i)

)
≤ 0, i ∈ [n]

for some functions gi(.) and hi(.). This form is amenable
to dynamic programming, since if we fix the value of xi, the
optimization problem for the subtree under i is decoupled from
the rest of the network. Set κn (x) = 0, define κi for i < n
recursively as

κi (x) = max
xc1(i),xc2(i)

hi(x,xc1(i),xc2(i))≤0

2∑
j=1

gcj(i)
(
xcj(i)

)
+ κcj(i)

(
xcj(i)

)
.

Then, the optimal value can be computed as γ∗ =
maxx κ1 (x) + g1 (x) . However, the above recursion requires
an infinite-dimensional computation at every step, since the
value of κi needs to be calculated for every value of x. To get
around this, we note that the variables λi, fi, αi are bounded,
and hence xi can be discretized to lie in a certain set Xi such
that every feasible xi is at most δ(εi) away (in infinity-norm
sense) from some point in Xi (Lemma 5). The discretization
error can be quantified, and this error bound can be used to
relax the constraint to hi (xi, xi+1) ≤ ε guaranteeing that any
solution to (5) is feasible for the relaxed constraint. This allows
us to define a dynamic program (Algorithm 1).

Fig. 6. The representation of a binary tree. For any node i, and its children
denoted c1(i), c2(i).

Algorithm 1 Dynamic programming on binary tree
S ← {i : c1 (i) = ∅, c2 (i) = ∅}
κi (x)← 0 ∀x ∈ Xi, i ∈ S
while |S| ≤ n do

S′ ← {i 6∈ S : c1 (i) , c2 (i) ∈ S}
∀i ∈ S′,∀x ∈ Xi:

κi (x)← max
x′1∈Xc1(i),x

′
2∈Xc2(i)

hi(x,x′1,x
′
2)≤ε

∑
j=1,2

gcj(i)
(
x′j
)

+ κcj(i) (x′)

S ← S ∪ S′
end while
γ ← maxx∈X1 κ1 (x) + g1 (x)

The algorithm essentially starts at the leaves of the tree and
proceeds towards the root, at each stage updating κ for nodes
whose children have already been updated (stopping at root).
Along with the discretization error analysis in Appendix D,
this essentially concludes Theorem 3.

It is worth noting that previous work on distribution level
markets have used AC power flow models (at least in some
approximate form) due to the importance of voltage constraints
and reactive power in a distribution system [48]. Our approach
extends in a straightforward way to this setting as well, as
the dynamic programming structure remains preserved (the
KKT conditions will simply be replaced by the corresponding
conditions for the AC based market clearing mechanism).

C. Evaluation of the Approximation Algorithm

To evaluate the performance of our approximation algorithm
on acyclic networks, we run it on a number of small test
networks and compare the results with the brute-force opti-
mal values. The algorithm indeed finds solutions within the
prespecified error range (and often exact) in reasonable time.

As an example, for an acyclic version of the IEEE 9-bus
network (taken from [49]), we demonstrate the suboptimality
gap of the solution versus the running time in Fig. 8. At each
point of the graph, the error percentage (y-axis) is bounded
by a constant factor of ε. Clearly the smaller ε we choose, the
longer is the running time, but the smaller is the error. As one
can see the error drops pretty quickly.

We should remark that the network chosen here was small
in order to allow for comparison with the optimal value.
However, the main advantage of our algorithm is that it is
scalable, while the brute-force becomes intractable quickly.
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Fig. 7. The 9-bus acyclic network from [49], used for the evaluation of the
proposed approximation algorithm.
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Fig. 8. The difference from the optimal solution as a function of the running
time of the algorithm, in the 9-bus network with 1% curtailment allowance.

VI. CONCLUDING REMARKS

Understanding the potential for market manipulation by
aggregators is crucial for electricity market efficiency in the
new era of renewable energy. In this paper, we characterized
the profit an aggregator can make by strategically curtailing
generation in the ex-post market as the outcome of a bi-
level optimization problem. This model captures the realistic
price clearing mechanism in the electricity market. We showed
through simulations on realistic test cases that there is poten-
tially large profit for aggregators by manipulating the LMPs
in the electricity market. When the aggregator is located in a
single bus, we have shown that the locational marginal price
is monotonically increasing with the curtailment, and we have
an exact polynomial-time algorithm to solve the aggregators
profit maximization problem.

The aggregator’s strategic curtailment problem in a general
setting is a difficult bi-level optimization problem, which is
intractable. However, we showed that for radial distribution
networks (where aggregators are likely located) there is an
efficient algorithm to approximate the solution up to arbitrary
precision. We also demonstrated via simulation on a distri-
bution test case that our algorithm can efficiently find the
approximately optimal curtailment strategy.

We view this paper as a first step in understanding market
power of aggregators, and more generally, towards market
design for integrating renewable energy and demand response
from geographically distributed sources. With the result of
our paper, it is interesting to ask what can the operator do
to address this problem. In particular, how to design market
rules for aggregators to maximize the contribution of renew-

able energy yet mitigate the exercise of market power. Also,
extending the analysis to the case of multiple aggregators in
the market is another interesting direction for future research.

APPENDIX

A. Connections between Curtailment Profit and Market Power

As mentioned earlier, there has been significant work on
market power in electricity markets, but work is only begin-
ning to emerge on the market power of renewable generation
producers. One important work from this literature is [10], and
the following is the proposed notion of market power from that
work.

Definition 4. For α∗i ≥ 0, the market power (ability) of the
aggregator is defined as

ηi =

(
λi(α

∗)− λi(0)

λi(0)

)
/

(
α∗i
pai

)
(7)

In this definition the value of ηi captures the ability of the
generator/aggregator to exercise market power. Intuitively, in a
market with high value of ηi, the aggregator can significantly
increase the price by curtailing a small amount of generation.

Interestingly, the optimal curtailment profit is closely related
to this notion of market power. We summarize the relationship
in the following proposition.

Proposition 4. If the curtailment profit γ is positive then the
market power ηi > 1. Furthermore, the larger the curtailment
profit is, the higher is the market power.

Proof. From the definition of γ(α∗) = λi(α
∗)(pai − α∗i ) −

λi(0)pai it follows that

γ(α∗)

λi(0)(pai − α∗i )
=
λi(α

∗)

λi(0)
− pai
pai − α∗i

= 1 +
λi(α

∗)− λi(0)

λi(0)
− (1− α∗i

pai
)−1

' 1 +
λi(α

∗)− λi(0)

λi(0)
− (1 +

α∗i
pai

)

=
λi(α

∗)− λi(0)

λi(0)
− α∗i
pai
. (8)

Therefore we have

pai
λi(0)(pai − α∗i )α∗i

γ(α∗) =

(
λi(α

∗)− λi(0)

λi(0)

)
/

(
α∗i
pai

)
− 1

= ηi − 1.

Since the left-hand side parameters are all positive, if γ(α∗) >
0, we can conclude that ηi > 1. Moreover, it is clear that the
larger the value of γ(α∗) is, the higher the value of ηi is.
Note that we used the approximation (1 − α∗i

pai
)−1 ' 1 +

α∗i
pai

,
since the curtailment is small with respect to the generation;
however, the right-hand side expression (8) is an upper bound
on the left-hand side anyway, and the result holds exactly.

This proposition highlights that the notion of market power
in [10] is consistent with an aggregator seeking to maximize
their curtailment profit, and higher curtailment profit corre-
sponds to more market power.
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B. Proof of Lemma 1

Let us take a look at the ISO’s optimization problem (1),
which is a linear program. It is not hard to see that the dual
of this problem is as follows.

maximize
λ−,λ+,µ−,µ+,ν

(∆p+ p− α− d)Tλ−+

(−p+ α+ d−∆p)Tλ+ + fTµ− − fTµ+ (9a)

subject to

BT (c+ λ+ − λ−)− µ− + µ+ +HT ν = 0 (9b)
λ−, λ+, µ−, µ+ ≥ 0 (9c)

If one focuses on the terms involving αi for a certain i, the
objective of the above optimization problem is in the form:
(∆p

i
+pi−αi−di)λ−i +(−pi+αi+di−∆pi)λ

+
i plus a linear

function of the rest of the variables (i.e. the rest of λ−, λ+, as
well as µ−, µ+, ν). There is no α in the constraints, and the
first two terms of this objective are the only parts where αi
appears (and with opposite signs).

We need to show that if αi is changed to αi + δ for some
δ > 0, then ci + λ+newi − λ−newi ≥ ci + λ+i − λ−i , where
λ+newi , λ−newi are the optimal solutions of the new problem.

We prove this in a general setting. Consider the following
two optimization problems.

f∗ = sup
x1,x2∈R
x3∈Rm

a1x1 + a2x2 + aT3 x3 (10a)

s.t. (x1, x2, x3) ∈ S (10b)

f∗new = sup
x1,x2∈R
x3∈Rm

(a1 − δ)x1 + (a2 + δ)x2 + aT3 x3 (11a)

s.t. (x1, x2, x3) ∈ S (11b)

Assume that the optimal values of the problems are attained
at (x∗1, x

∗
2, x
∗
3) and (x∗new1 , x∗new2 , x∗new3 ), respectively.

We claim that x∗new2 − x∗new1 ≥ x∗2 − x∗1 (This precisely
implies the LMP condition in our case, i.e. λ+newi −λ−newi ≥
λ+i − λ

−
i ).

Suppose by way of contradiction that x∗new2 − x∗new1 <
x∗2 − x∗1.
We know that a1x∗1 + a2x

∗
2 + aT3 x

∗
3 ≥ a1x1 + a2x2 +

aT3 x3, ∀(x1, x2, x3) ∈ S.
Therefore we have

(a1 − δ)x∗new1 + (a2 + δ)x∗new2 + aT3 x
∗new
3

= a1x
∗new
1 + a2x

∗new
2 + aT3 x

∗new
3 − δx∗new1 + δx∗new2

≤ a1x∗1 + a2x
∗
2 + aT3 x

∗
3 + δ(x∗new2 − x∗new1 )

< a1x
∗
1 + a2x

∗
2 + aT3 x

∗
3 + δ(x∗2 − x∗1)

= (a1 − δ)x∗1 + (a2 + δ)x∗2 + aT3 x
∗
3.

The first inequality above follows from the fact that
(x∗new1 , x∗new2 , x∗new3 ) ∈ S. Now the above implies that
(x∗new1 , x∗new2 , x∗new3 ) is not the optimal solution of (11), and
it is a contradiction.

As a result, x∗new2 − x∗new1 ≥ x∗2 − x∗1.

C. Proof of Theorem 2

Since we are in the single-bus curtailment regime, α has
only one nonzero component. For the sake of convenience,
we denote that element itself by a scalar α throughout this
proof (no α is vector in this proof). The proof consists of
the following two pieces: 1) From each jump point, the point
where the next jump happens can be computed in polynomial
time, 2) There are at most polynomially (in this case even
linearly) many jumps.

Assuming that the solution to the program (1) is unique, for
any fixed value of α, exactly t of the constraints (1b,1c,1d)
are binding (active). We can express these binding constraints
as

Af = b(α),

where A ∈ Rt×t is an invertible matrix, and b(α) ∈ Rt is a
vector that depends on α. As long as the binding constraints
do not change, the matrix A is fixed and the optimal solution
is linear in α (i.e. f = A−1b(α)). Then, for simplicity, we can
express the solution as f(α) = f0 + αa, for some t-vectors
f0 and a.

Now if we look at the non-binding (inactive) constraints of
(1), they can also be expressed as

Ãf < b̃,

for some matrix Ã and vector b̃ of appropriate dimensions.
Inserting f into this set of inequalities yields Ãf0 +αÃa < b̃,
or equivalently

α(Ãa)i < b̃i − (Ãf0)i,

for all i = 1, 2, . . . , (2n+ 2t− rank(G)).
Now we need to figure out that, with increasing α, which

of the non-binding constraints becomes binding first and with
exactly how much increase in α. If for some i we have
(Ãa)i ≤ 0, then it is clear that increasing α cannot make
constraint i binding. If (Ãa)i > 0 then the constraint can be
written as

α <
b̃i − (Ãf0)i

(Ãa)i
.

Computing the right-hand side for all i, and taking their
minimum, tells us exactly which constraint will become bind-
ing next and how much change in the current value of α results
in that.

The complexity of this procedure is O(t2.373) for computing
f0 and a, plus O(t(2n+ 2t)) = O(nt+ t2) for computing the
lowest bound among all the constraints. Hence the complexity
is O(t2.373).

The above procedure describes how the next jump point
can be computed efficiently from the current point. The exact
same procedure can be repeated for reaching the subsequent
jump points. All remains to show is the second piece of the
proof, which is that the number of jump points are bounded
polynomially. To show the last part note that by increasing
α, if a binding constraint becomes non-binding, it will not
become binding again. As a result, each constraint can change
at most twice, and therefore the number of jumps is at most
twice the number of constraints. Thus, the number of jumps
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is O(n + t), and the overall complexity of the algorithm is
O((n+ t)t2.373) = O(t3.373).

D. Proof of Theorem 3

Lemma 5 (δ-discretization). Given a set C ⊂ [L1, L1]×· · ·×
[Lk, Lk], there exists a finite set X such that

∀z ∈ C ∃z′ ∈ X , max
1≤i≤k

|zi − z′i| ≤ δ

and X contains at most V/δk points, where V =
∏k
i=1(Li −

Li) is a constant (the volume of the box). X is said to be an
δ-discretization of C and written as X (δ).

Lemma 6 (Reduction to Binary Tree). Any tree with arbitrary
degrees can be reduced to a binary tree by introducing
additional dummy nodes to the network.

Proof. Take any node b in the tree with some parent a and
k > 2 children c1, . . . , ck. There exists m > 0 such that 2m <
k ≤ 2m+1 for some m. We will show that this subgraph can
be made a binary tree by introducing O(k) dummy nodes (in
m levels) between b and its children. The additional nodes and
edges are defined as follows:

b→ b0, b→ b1,

b0 → b00, b0 → b01, b1 → b10, b1 → b11,

b00 → b000, b00 → b001, . . . , b11 → b111,

up to m levels:

b0...00 → c1, b0...00 → c2, b0...01 → c3 . . .

This is transparently a binary tree with O(k) nodes. Each of
the new nodes has zero injection, and effectively the incoming
flow from its parent is just split in some way between its
children. This in fact enforces the flow conservation constraint
at b. Similar construction can be applied to any node of the
tree with more than two children, until no such node exists.
It can be seen that the number of nodes in the new graph is
still linear in n.

So any tree can be transformed to a binary one by the above
procedure. For the rest of the analysis we focus on the ε-
approximation of the dynamic program on the resulting binary
tree. The optimization problem (5) on a binary tree, can be
written after some algebra as the following.

max
λ,f,α

n∑
i=1

λi(pi − αi) (12a)

subject to

0 ≤ αi ≤ pai , i = 1, . . . , n (12b)

∆p
i
≤ fc1(i) + fc2(i) − fi − pi + αi + di ≤ ∆pi,

i = 1, . . . , n (12c)

f
i
≤ fi ≤ f i, i = 2, . . . , n (12d)

{
(λi − ci)(fc1(i) + fc2(i) − fi − pi + αi + di −∆p

i
) ≥ 0

(λi − ci)(fc1(i) + fc2(i) − fi − pi + αi + di −∆pi) ≥ 0
,

i = 1, . . . , n (12e)

{
(λi − λcj(i))(f cj(i) − fcj(i)) ≥ 0

(λi − λcj(i))(f cj(i) − fcj(i)) ≥ 0
,

i = 1, . . . , n, j = 1, 2 (12f)

The constraints 0 ≤ αi ≤ pai and f
i
≤ fi ≤ f i, along with

a prior bound on lambda λ ≤ λ ≤ λ can be used to define the
box where xi = (λi, fi, αi) lives. Then an ε-accurate solution
is a solution to the following problem.

max
λ,f,α

n∑
i=1

λi(pi − αi) (13a)

subject to

∆p
i
− ε ≤ fc1(i) + fc2(i) − fi − pi + αi + di ≤ ∆pi + ε,

i = 1, . . . , n (13b)

{
(λi − ci)(fc1(i) + fc2(i) − fi − pi + αi + di −∆p

i
) ≥ −ε

(λi − ci)(fc1(i) + fc2(i) − fi − pi + αi + di −∆pi) ≥ −ε
,

i = 1, . . . , n (13c)

{
(λi − λcj(i))(f cj(i) − fcj(i)) ≥ −ε
(λi − λcj(i))(f cj(i) − fcj(i)) ≥ −ε

,

i = 1, . . . , n, j = 1, 2 (13d)

Assuming a δ-discretization of the constraint set, each of the
constraints (as well as ε-accuracy of the objective) imposes
a bound on the value of δ. For example constraint (13c)
requires 4δ ≤ ε (Note that we could have defined different
deltas δλ, δf , δα for different variables and in that case we
had 3δf + δp ≤ ε, but for simplicity we take all the deltas to
be the same). Similar bounds on δ can be obtained from the
other constraints, and taking the lowest upper-bound, implies
the existence of a constant c′ (that depends on the parameters)
such that δ ≤ ε/c′.

As a result we have a δ-discretization with |X | = V/δ3 =
c′3V/ε3 number of points, for any node. Therefore, the com-
putational complexity over any node will be |X |3, because
we have |X | many values for the node itself and |X | many
values for any of its two children. Since there are n nodes, the
overall complexity of the algorithm will simply be n|X |3 =
nc′9V 3/ε9 = cn/ε9.
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