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ABSTRACT
Real-time demand response is an essential tool for handling
the uncertainties associated with the increasing penetration
of renewable generation. Traditionally, demand response has
been focused on large industrial and commercial loads, how-
ever it is expected that a large number of small residential
loads such as air conditioners, dish washers, and electric ve-
hicles will also participate in the coming years. The elec-
tricity consumption of these smaller loads, which we call de-
ferrable loads, can be shifted over time, and can thus be used
(in aggregate) to compensate for the random fluctuations in
renewable generation. In this paper, we propose a real-time
distributed deferrable load control algorithm to reduce the
variance of aggregate load (load minus renewable genera-
tion) by shifting the power consumption of deferrable loads
to periods with high renewable generation. At every time
step, the algorithm minimizes the expected aggregate load
variance with updated predictions. We prove that the sub-
optimality of the algorithm vanishes quickly as time horizon
expands. Further, we evaluate the algorithm via trace-based
simulations.

Keywords
Smart grid; Deferrable load control; Demand response; Model
predictive control

1. INTRODUCTION
The electricity grid is expected to change dramatically

over the coming decades. Conventional coal, gas, and nu-
clear generation is being rapidly substituted by renewable
generation such as wind and solar [4]. However, these renew-
ables are not only intermittent but also difficult to predict.
For example, wind generation prediction has a root-mean-
square error of around 18% of the nameplate capacity look-
ing 24 hours ahead [16]. Such high uncertainty in generation
calls the traditional control strategy of “generation follows
demand” into question.

Real-time demand response programs seek to induce dy-
namic demand management of customers’ electricity load in
response to power supply conditions, e.g., by reducing or de-
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ferring power consumption in response to requests from the
utility. Such programs have the potential to compensate for
the uncertainties in renewables in real-time so as to ease the
incorporation of renewable energy into the grid, and so are
recognized as priority areas for the future smart grid by both
the National Institute of Standards and Technology [26] and
the Department of Energy [10].

The success of demand response depends on the willing-
ness and ability of consumers’ electrical loads to be deferred
over time. Such deferrable loads are expected to take many
forms, e.g., plug-in electric vehicles, dryers, air conditioners,
etc. The penetration of deferrable loads is expected to grow
significantly in the coming years as a result of increasing
penetration of electric vehicles and smart appliances [11].
This expected increase highlights the potential for schedul-
ing deferrable loads in order to compensate for the random
fluctuations of renewable energy.

However, realizing the potential of deferrable loads is a
significant challenge and requires the coordination of a large
number of geographically distributed loads. Current ap-
proaches for achieving such coordination are widely var-
ied, and include forms of direct load control by the util-
ity [20], time-of-use pricing and other complex pricing struc-
tures [2, 6, 22], and (decentralized) negotiations between a
coordinator and the loads [13, 14, 24]. Each of these ap-
proaches has a rich and growing literature in the academic
community, and the first two approaches have found real-
world implementations.

The focus in this paper is on the third approach: de-
ferrable load control via decentralized coordination. The
motivation for this approach is that, as the penetration of
deferrable loads grows, the scale of the task of controlling
deferrable loads will prevent centralized direct control and
so distributed, decentralized coordination will become nec-
essary.

The study of the decentralized coordination of deferrable
loads, especially electric vehicles (EVs), has received increas-
ing attention in recent years, and a number of methods have
been proposed to this point. In particular, early work fo-
cused on simulation-based demonstration of the benefits of
coordination of EVs, e.g., [1, 21, 25]. Following such papers,
decentralized algorithms with performance guarantees were
proposed to schedule EV charging in the deterministic case,
i.e., where the uncertainties of EV arrivals and renewable
generation are ignored [13, 14, 24]. For example, [24] pro-
poses a decentralized charging strategy for EVs that is opti-
mal for the setting where EVs are identical, i.e., all EVs plug
in for charging at the same time and have the same dead-
lines, energy deficits, and maximum charging rates. More
recently, [13] relaxes the restrictions of [24] and develops



an algorithm that is optimal with arbitrary specifications
(plug-in times, deadlines, charging rates, etc.) of the EVs.
Further, [14] proposes a stochastic algorithm that considers
discrete EV charging rates, and proves that suboptimality of
the algorithm tends to zero as the number of EVs increases.

The discussion above highlights that it is possible to achieve
decentralized optimal control of deferrable loads. However,
a key assumption in all prior works discussed above is that
the information about deferrable loads, non-deferrable loads,
and renewable generation is precisely known ahead of time,
often one day ahead of time. Of course, in practice, only pre-
dictions of these quantities are known ahead of time. The
impact of uncertainties on the performance of deferrable load
control algorithms can be dramatic, e.g., see Figure 3.

Summary and contributions of this paper.
The goal of this paper is to provide a real-time

algorithm for decentralized deferrable load control
in the context of uncertain predictions about both
future loads and future renewable generation. More
specifically, in this paper we propose a novel extension of
the“optimal deferrable load control problem”studied in [13].
This extension incorporates uncertainty about both deferrable
and non-deferrable loads, in addition to inexact predictions
of renewable generation; and then uses this problem to de-
rive a new algorithm for deferrable load control. Further, we
perform both analytic and trace-based performance analysis
of the algorithm in order to quantify the impact of predic-
tion uncertainties on deferrable load control. In particular,
the contributions of the work are threefold.

First, the model formulation we propose is the first de-
ferrable load control problem formulation to rigorously in-
clude prediction uncertainties (Section 2). Additionally, the
formulation includes a very general model for deferable loads
that allows for heterogeneous deadlines and maximum charg-
ing rates, as well as stochastic arrivals.

Second, in the context of this model, we introduce a novel
real-time algorithm for deferrable load control with uncer-
tainty (Section 3.2). The real-time algorithm essentially
solves a series of optimal control problems whose horizon
lengths shrink with time. At any time, the algorithm uses
only the information that is available, i.e., specifications of
deferrable loads that have already arrived and predictions
on future loads and renewable generation. In this sense, the
algorithm we propose is a (non-trivial) extension of the al-
gorithm proposed in [13], which applies only in the case of
exact knowledge of loads and renewables. A key technique
introduced by the algorithm in our work is the concept of
a “pseudo deferrable load,” which is simulated at the utility
and used to represent future deferrable load arrivals.

Third, we perform a detailed performance analysis of our
proposed algorithm. The performance analysis uses both an-
alytic results and trace-based experiments to study (i) the
reduction in expected load variance achieved via deferrable
load control, and (ii) the value of using real-time control
via our algorithm when compared with static (open-loop)
control. To the best of our knowledge, the theorems in Sec-
tion 4 that answer these questions represent the first analytic
results to precisely characterize the impact of prediction in-
accuracy on deferrable load control. These analytic results
highlight that as time horizon expands, the expected load
variance obtained by our proposed algorithm approaches the
optimal value (Corollary 3). Also, as time horizon expands,
the algorithm obtains an increasing variance reduction over
the optimal static algorithm (Corollary 5, 6). Furthermore,
in Section 5 we provide trace-based experiments using data
from Southern California Edison and Alberta Electric Sys-

tem Operator to validate the analytic results in the con-
text of real-world settings. These experiments highlight that
our proposed algorithm obtains a small suboptimality under
high uncertainties of renewable generation, and has signifi-
cant performance improvement over the optimal static con-
trol.

Related work.
In addition to the work on real-time decentralized de-

ferrable load control algorithm described above; previous
literature has proposed load control algorithms that incor-
porate uncertainties in both renewable generation and de-
ferrable load arrivals. However, the literature on this topic
is much less mature than that focusing on designing de-
centralized load control algorithms. Most of the work to
this point has been simulation-based, e.g., [5, 8, 9]. How-
ever, some algorithms have been proposed that maintain
analytic performance guarantees for limited forms of uncer-
tainty, e.g., [7,23,28]. For example, [7] proposes an algorithm
that minimizes the optimal competitive ratio in the context
where uncertainties about EV arrivals are considered, but
renewable generation is precisely known (and constant). In
contrast, [23] considers uncertainties of both the renewable
generation and EV arrivals, and proposes an algorithm with
a provable worst-case lower bound on performance.

The above description highlights that, while there have
been previous proposals about how to incorporate predic-
tions into load control algorithms; the algorithms to this
point have been analyzed with a “worst-case” perspective.
In this paper, we focus on the design and analysis of a load
control algorithm with an “average-case” perspective. This
approach is motivated by the fact that worst-case perfor-
mance bounds on situations with stochastic uncertainties in
predictions can severely limit the value extracted from pre-
dictions. The analytic and experimental results in Sections
4 and 5 highlight the benefits of our perspective.

2. MODEL OVERVIEW AND NOTATION
This paper studies the design and analysis of real-time

control algorithms for scheduling deferrable loads to com-
pensate the random fluctuations in renewable generation.
In the following we present a model of this scenario that
serves as the basis for our algorithm design and performance
evaluation. The model includes renewable generation, non-
deferrable loads, and deferrable loads, which are described in
turn. The key differentiation of this model from that of [13]
is the inclusion of uncertainties (prediction errors) on future
renewable generation and loads.

Throughout, we consider a discrete-time model over a fi-
nite time horizon. The time horizon is divided into T time
slots of equal length and labeled 1, . . . , T . In practice, the
time horizon could be one day and the length of a time slot
could be 10 minutes.

2.1 Renewable generation and
non-deferrable load

Renewable generation like wind and solar is stochastic,
fluctuating, and difficult to predict precisely. Similarly, non-
deferrable load, including televisions, lights, and computers,
are hard to predict at a low aggregation levels, for example
the substation feeder level.

Since the focus of the model is on scheduling deferrable
load, we aggregate renewable generation and non-deferrable
load into one process termed the base load, b. Specifically,
the base load b = {b(τ)}Tτ=1 is defined as the difference be-
tween non-deferrable load and renewable generation, and is



Figure 1: Diagram of the notation and structure
of the model for base load, i.e., non-deferrable load
minus renewable generation.

a stochastic process.
To model the uncertainty of base load, we use a causal fil-

ter based model described as follows, and illustrated in Fig-
ure 1. In particular, the base load at time τ is modeled as
a random deviation δb = {δb(τ)}Tτ=1 around its expectation
b̄ = {b̄(τ)}Tτ=1. The process b̄ is specified externally to the
model, e.g., from historical data and weather report, and the
process δb(τ) is further modeled as an uncorrelated sequence
of identically distributed random variables e = {e(τ)}Tτ=1

with mean 0 and variance σ2, passing through a causal fil-
ter. Specifically, let f = {f(τ)}∞τ=−∞ denote the impulse
response of this causal filter and assume that f(0) = 1, then
f(τ) = 0 for τ < 0 and

δb(τ) =

T∑
s=1

e(s)f(τ − s), τ = 1, . . . , T.

Given the model above, at time t = 1, . . . , T , a prediction
algorithm can observe the sequence e(s) for s = 1, . . . , t, and
predicts b as1

bt(τ) = b̄(τ) +

t∑
s=1

e(s)f(τ − s), τ = 1, . . . , T. (1)

Note that bt(τ) = b(τ) for τ = 1, . . . , t since f is causal.
This model allows for non-stationary base load through

the specification of b̄ and a broad class of models for un-
certainty in the base load via f and e. In particular, two
specific filters f that we consider in detail later in the paper
are:

(i) A filter with finite but flat impulse response, i.e., there
exists ∆ > 0 such that

f(t) =

{
1 if 0 ≤ t < ∆

0 otherwise;

(ii) A filter with an infinite and exponentially decaying im-
pulse response, i.e., there exists a ∈ (0, 1) such that

f(t) =

{
at if t ≥ 0

0 otherwise.

These two filters provide simple but informative examples
for our discussion in Section 4.

2.2 Deferrable load
To model deferrable loads we consider a setting where N

deferrable loads arrive over the time horizon, each requiring
a certain amount of electricity by a given deadline. Further,
a real-time algorithm has imperfect information about the
arrival times and sizes of these deferrable loads.

More specifically, we assume a total of N deferrable loads
and label them in increasing order of their arrival times by
1, . . . , N , i.e., load n arrives no later than load n + 1 for
n = 1, . . . , N − 1. Further, we define N(t) as the number of
loads that arrive before (or at) time t for t = 1, . . . , T and

1This prediction algorithm is a Wiener filter [30].

fix N(0) := 0. Thus, load 1, . . . , N(t) arrives before or at
time t for t = 1, . . . , T and N(T ) = N .

For each deferrable load, its arrival time and deadline,
as well as other constraints on its power consumption, are
captured via upper and lower bounds on its possible power
consumption during each time. Specifically, the power con-
sumption of deferrable load n at time t, pn(t), must be be-
tween given lower and upper bounds p

n
(t) and pn(t), i.e.,

p
n
(t) ≤ pn(t) ≤ pn(t), n = 1, . . . , N, t = 1, . . . , T. (2)

These are specified externally to the model. For example, if
an electric vehicle plugs in with Level II charging then its
power consumption must be within [0, 3.3]kW. However, if
it is not plugged in (has either not arrived yet or has already
departed) then its power consumption is 0kW, i.e., within
[0, 0]kW. Further, we assume that a deferrable load n must
withdraw a fixed amount of energy Pn by its deadline, i.e.,

T∑
t=1

pn(t) = Pn, n = 1, . . . , N. (3)

Finally, the N deferrable loads arrive randomly through-
out the time horizon. Define

a(t) :=

N(t)∑
n=N(t−1)+1

Pn (4)

as the total energy request of all deferrable loads that arrive
at time t for t = 1, . . . , T . We assume that {a(t)}Tt=1 is
a sequence of independent identically distributed random
variables with mean λ and variance s2. Further, define

A(t) :=

T∑
τ=t+1

a(τ) (5)

as the total energy requested after time t for t = 1, . . . , T .
In summary, at time t = 1, . . . , T , a real-time algorithm

has full information about the deferrable loads that have ar-
rived, i.e., p

n
, pn, and Pn for n = 1, . . . , N(t), and knows

the expectation of future deferrable load total energy re-
quest E(A(t)). However, a real-time algorithm has no other
knowledge about deferrable loads that arrive after time t.

2.3 The deferrable load control problem
We can now formally state the deferrable load control

problem that is the focus of this paper. Recall that the
objective of real-time deferrable load control is to compen-
sate the random fluctuations in renewable generation and
non-deferrable load in order to “flatten” the aggregate load
d = {d(t)}Tt=1, which is defined as

d(t) = b(t) +

N∑
n=1

pn(t), t = 1, . . . , T. (6)

In this paper, we focus on minimizing the variance of the
aggregate load d, V (d), as a measure of “flatness”, that is
defined as

V (d) =
1

T

T∑
t=1

(
d(t)− 1

T

T∑
τ=1

d(τ)

)2

. (7)

We can now formally specify the optimal deferrable load



control (ODLC) problem that we seek to solve:

ODLC: min
1

T

T∑
t=1

(
d(t)− 1

T

T∑
τ=1

d(τ)

)2

(8)

over pn(t), d(t), ∀n, t

s.t. d(t) = b(t) +

N∑
n=1

pn(t), ∀t;

p
n
(t) ≤ pn(t) ≤ pn(t), ∀n, t;

T∑
t=1

pn(t) = Pn, ∀n.

In the above ODLC, the objective is simply the variance
of the aggregate load, V (d), and the constraints correspond
to equations (6), (2), and (3), respectively. We chose V (d) as
the objective for ODLC because of its significance for micro-
grid operators [19]. However, additionally, [13] has proven
that the optimal solution does not change if the objective
function V (d) is replaced by f(d) =

∑T
t=1 U(d(t)) where

U : R→ R is strictly convex. Hence, we can use V (d) with-
out loss of generality.

3. ALGORITHM DESIGN
Given the optimal deferrable load control (ODLC) prob-

lem defined in (8), the first contribution of this paper is
to design an algorithm that solves the ODLC problem in
real-time, given uncertain predictions of base and deferrable
loads.

There are two key challenges for the algorithm design.
First, the algorithm has access only to uncertain predictions
at any given time, i.e., at time t the algorithm only knows
deferrable loads 1 to N(t) rather than 1 to N , and only
knows the prediction bt instead of b itself. Second, even if
there was no uncertainty in predictions, solving the ODLC
problem requires significant computational effort when there
are a large number of deferrable loads.

Motivated by these challenges, in this section we design
a decentralized algorithm that provides strong performance
guarantees even when there is uncertainty in the predictions.
The algorithm we propose builds on the work of [13], which
provides a decentralized algorithm for the case without un-
certainty in predictions. We present the details of the al-
gorithm from [13] in Section 3.1 and then present a modi-
fication of the algorithm to handle uncertain predictions in
Section 3.2.

3.1 Deferrable load control without uncertainty
We start with the case where the algorithm has complete

knowledge (no uncertainty) about base load and deferrable
loads. In this context, the key algorithmic challenge is to
solve the ODLC problem in (8) via a decentralized algo-
rithm. Such a decentralized algorithm was proposed in [13],
and we summarize the algorithm and its analysis here.

Algorithm definition: The algorithm from [13] is given
in detail in Algorithm 1. It is iterative and the superscripts
in brackets denote the round of iteration. In each iteration
k ≥ 0, there are two key steps: Step (ii) and (iii). In Step

(ii), the utility calculates the average aggregate load g(k) and
broadcasts it to all deferrable loads. Note that the utility
only needs to know the reported power consumption sched-

ule p
(k)
n , the base load b, and the number of deferrable loads

N . It does not need to know the constraints of the deferable
loads, hence preserving the privacy of deferrable loads. In
Step (iii), each deferrable load n updates its consumption

Algorithm 1 Deferrable load control without uncertainty

Input: The utility knows the base load b and the number N
of deferrable loads. Each deferrable load n ∈ {1, . . . , N}
knows its energy request Pn and power consumption
bounds pn and p

n
. The utility sets K, the number of

iterations.
Output: Deferrable load schedule p = (p1, . . . , pN ).

(i) Set k ← 0 and intitialize the deferrable load schedule

p(k) as

p
(k)
n (t)← 0, t = 1, . . . , T , n = 1, . . . , N .

(ii) The utility calculates the average aggregate load per

deferrable load g(k) = d(k)/N as

g(k)(t)← 1

N

(
b(t) +

N∑
n=1

p(k)n (t)

)
, t = 1, . . . , T,

and broadcasts g(k) to all deferrable loads.

(iii) Each deferrable load n ∈ {1, . . . , N} calculates a new

schedule p
(k+1)
n by solving

min
T∑
τ=1

g(k)(τ)pn(τ) +
1

2

(
pn(τ)− p(k)n (τ)

)2
over pn(1), . . . , pn(T )

s.t. p
n
(τ) ≤ pn(τ) ≤ pn(τ), ∀τ ;

T∑
τ=1

pn(τ) = Pn,

and reports p
(k+1)
n to the utility.

(iv) Set k ← k + 1. If k < K, go to Step (ii).

schedule by solving a convex optimization problem. The
objective function has two terms. The first term can be in-
terpreted as the electricity bill if the electricity price was set
to g(k). The second term vanishes as iterations continue.

Algorithm convergence results: Importantly, though
Algorithm 1 is iterative, it converges very fast. In fact, the
simulations in [13] stop the iterations after 15 rounds (i.e.,
K=15) in all cases because convergence is already achieved.
Further, Algorithm 1 provably solves the ODLC problem
given in (8) when there is no uncertainty, i.e., when N(t) =
N and bt = b for t = 1, . . . , T [13]. More precisely, let
O denote the set of optimal solutions to (8), and define
d(p,O) := minp̂∈O ‖p− p̂‖ as the distance from a deferrable
load schedule p to optimal deferrable load schedules O.

Proposition 1 ( [13]). When there is no uncertainty,
i.e., N(t) = N and bt = b for t = 1, . . . , T , the deferrable

load schedules p(k) obtained by Algorithm 1 converge to op-
timal schedules to ODLC, i.e., d(p(k),O)→ 0 as k →∞.

A particular class of optimal solutions will be of interest
to us later in the paper, so we define them here. Specifically,
we call a feasible deferrable load schedule p = (p1, . . . , pN )
valley-filling, if there exists some constant C ∈ R such that∑N
n=1 pn(t) = (C − b(t))+ for t = 1, . . . , T .

Proposition 2 ( [13]). If a valley-filling deferrable load
schedule exists, then it solves ODLC. Further, in such cases,
all optimal schedules to ODLC have the same aggregate load.

Note that valley-filling schedules tend to exist in cases
where there are a large numbers of deferrable loads, and
therefore (in such settings) all optimal solutions to ODLC
are valley-filling, according to Proposition 2.



3.2 Deferrable load control with uncertainty
Algorithm 1 provides a decentralized approach for solving

the ODLC problem; however it assumes exact knowledge
(certainty) about base load and deferrable loads. In this
section, we adapt Algorithm 1 to the setting where there
is uncertainty in base load and deferrable load predictions,
while maintaining strong performance guarantees. In par-
ticular, in this section we assume that at time t, only the
prediction bt is known, not b itself, and only information
about deferrable loads 1 to N(t) and the expectation of fu-
ture energy requests E(A(t)) are known.

Algorithm definition: To adapt Algorithm 1 to deal
with uncertainty, the first step is straightforward. In partic-
ular, it is natural to replace the base load b by its prediction
bt in Algorithm 1 to deal with the unavailability of b.

However, dealing with the unavailability of future deferrable
load information is trickier. To do this we use a pseudo de-
ferrable load, which is simulated at the utility, to represent
future deferrable loads. More specifically, let q = {q(τ)}Tτ=t
with q(t) = 0 denote the power consumption of the pseudo
load, and assume that it requests E(A(t)) amount of energy,
i.e.,

T∑
τ=t

q(τ) = E(A(t)). (9)

We also assume that q is point-wise upper and lower bounded
by some upper and lower bounds q and q, i.e.,

q(τ) ≤ q(τ) ≤ q(τ), τ = t, . . . , T. (10)

Note that q(t) = q(t) = 0. The bounds q and q should be set
according to historical data. Here, for simplicity, we consider
them to be q(τ) = 0 and q(τ) =∞ for τ = t+ 1, . . . , T .

Given the above setup, the utility solves the following
problem at every time slot t = 1, . . . , T , to accommodate
the availability of only partial information.

ODLC-t: min

T∑
τ=t

(
d(τ)− 1

T − t+ 1

T∑
s=t

d(s)

)2

(11)

over pn(τ), q(τ), d(τ), n ≤ N(t), τ ≥ t

s.t. d(τ) = bt(τ) +

N(t)∑
n=1

pn(τ) + q(τ), τ ≥ t;

p
n
(τ) ≤ pn(τ) ≤ pn(τ), n ≤ N(t), τ ≥ t;

T∑
τ=t

pn(τ) = Pn(t), n ≤ N(t);

q(τ) ≤ q(τ) ≤ q(τ), τ ≥ t;
T∑
τ=t

q(τ) = E(A(t))

where Pn(t) = Pn−
∑t−1
τ=1 pn(τ) is the energy to be consumed

at or after time t, for n = 1, . . . , N(t) and t = 1, . . . , T .
Now, adjusting Algorithm 1 to solve ODLC-t gives Algo-

rithm 2, which is a real-time, shrinking-horizon control algo-
rithm. Note that if base load prediction is exact (i.e., bt = b
for t = 1, . . . , T ) and all deferrable loads arrive at the begin-
ning of the time horizon (i.e., N(t) = N for t = 1, . . . , T ),
then ODLC-1 reduces to ODLC and Algorithm 2 reduces to
Algorithm 1.

Algorithm convergence results: We provide analytic
guarantees on the convergence and optimality of Algorithm
2. In particular, similarly to Proposition 1, we prove that

Algorithm 2 Deferrable load control with uncertainty

Input: At time t, the utility knows the prediction bt of base
load and the number N(t) of deferrable loads. Each de-
ferrable load n ∈ {1, . . . , N(t)} knows its future energy
request Pn(t) and power consumption bounds pn and p

n
.

The utility sets K, the number iterations.
Output: At time t, output the power consumption pn(t)

for deferrable loads 1, . . . , N(t).

At time slot t = 1, . . . , T :

(i) Set k ← 0. Each deferrable load n ∈ {1, . . . , N(t)}
initializes its schedule {p(0)n (τ)}Tτ=t as

p(0)n (τ)←

{
p
(K)
n (τ) if n ≤ N(t− 1)

0 if n > N(t− 1)
, τ = t, . . . , T

where p
(K)
n is the schedule of load n in iteration K of

the previous time slot t− 1.

(ii) The utility solves

min

T∑
τ=t+1

bt(τ) +

N(t)∑
n=1

p(k)n (τ) + q(τ)

2

over q(t), . . . , q(T )

s.t. q(τ) ≤ q(τ) ≤ q(τ), τ ≥ t;
T∑
τ=t

q(τ) = E(A(t))

to obtain a pseudo schedule {q(k)(τ)}Tτ=t+1. The util-
ity then calculates the average aggregate load per de-
ferrable load g(k) as

g(k)(τ)← 1

N(t)

bt(τ) +

N(t)∑
n=1

p(k)n (τ) + q(k)(τ)


for τ = t, . . . , T, and broadcasts {g(k)(τ)}Tτ=t to de-
ferrable loads n = 1, . . . , N(t).

(iii) Each deferrable load n = 1, . . . , N(t) solves

min

T∑
τ=t

g(k)(τ)pn(τ) +
1

2

(
pn(τ)− p(k)n (τ)

)2
over pn(t), . . . , pn(T )

s.t. p
n
(τ) ≤ pn(τ) ≤ pn(τ), τ ≥ t;

T∑
τ=t

pn(τ) = Pn(t),

to obtain a new schedule {p(k+1)
n (τ)}Tτ=t, and reports

{pk+1
n (τ)}Tτ=t to the utility.

(iv) Set k ← k + 1. If k < K, go to Step (ii).

(v) Deferrable load n ∈ {1, . . . , N(t)} sets pn(t) ← pKn (t)
and Pn(t+ 1)← Pn(t)− pn(t).

Algorithm 2 solves ODLC-t at every time slot. Specifically,
let O(t) denote the set of optimal schedules to ODLC-t, and
define d(p,O(t)) := min(p̂,q̂)∈O(t) ‖p−p̂‖ as the distance from
a schedule p to optimal schedules O(t) at time t, for t =
1, . . . , T .

Theorem 1. At time t = 1, . . . , T , the deferrable load
schedules p(k) obtained by Algorithm 2 converge to optimal
schedules to ODLC-t, i.e., d(p(k),O(t))→ 0 as k →∞.



This theorem is proven in Section A.1. Though iterative,
Algorithm 2 converges fast, similarly to Algorithm 1. In the
simulations, setting K = 15 is enough for all test cases.

Similarly to Proposition 2, “t-valley-filling”provides a sim-
ple characterization of the solutions to ODLC-t. Specifically,
at time t = 1, . . . , T , a feasible schedule (p, q) to ODLC-t is
called t-valley-filling, if there exists some constant C(t) ∈ R
such that

q(τ) +

N(t)∑
n=1

pn(τ) = (C(t)− bt(τ))+, τ = t, . . . , T. (12)

Given this definition of t-valley-filling, the following corollary
follows immediately from Proposition 2.

Corollary 1. At time t = 1, . . . , T , a t-valley-filling de-
ferrable load schedule, if exists, solves ODLC-t. Further-
more, in such cases, all optimal schedules to ODLC-t have
the same aggregate load.

This corollary serves as the basis for the performance anal-
ysis we perform in Section 4. Remember that t-valley-filling
schedules tend to exist in cases where there are a large num-
bers of deferrable loads.

4. PERFORMANCE EVALUATION
To this point, we have shown that Algorithm 2 makes op-

timal decisions with the information available at every time
slot, i.e., it solves ODLC-t at time t for t = 1, . . . , T . How-
ever, these decisions are still suboptimal compared to what
could be achieved if exact information was available. In this
section, our goal is to understand the impact of uncertainty
on the performance. In particular, we study two questions:

(i) How do the uncertainties about the base load and de-
ferrable loads impact the expected load variance ob-
tained by Algorithm 2?

(ii) What is the improvement of using the real-time control
provided by Algorithm 2 over using the optimal static
control?

Our answers to these questions are below. Throughout,
we focus on the special, but practically relevant, case when
a t-valley-filling schedule exists at every time t = 1, . . . , T .
As we have mentioned previously, when the number of de-
ferrable loads is large this is a natural assumption that holds
for practical load profiles. The reason for making this as-
sumption is that it allows us to use the characterization of
optimal schedules given in (12). In fact, without loss of gen-
erality, we further assume C(t) ≥ bt(τ) for τ = t, . . . , T ,
under which (12) implies

d(t) = C(t) =
1

T − t+ 1

 T∑
τ=t

bt(τ) + E(A(t)) +

N(t)∑
n=1

Pn(t)


(13)

for t = 1, . . . , T . Thus, equation (13) defines the model we
use for the performance analysis of Algorithm 2.

The expected load variance of Algorithm 2.
We start by calculating the expected load variance, E(V ),

of Algorithm 2. The goal is to understand how uncertainty
about base load and deferrable loads impacts the load vari-
ance. Note that, if there are no base load prediction errors
and deferrable loads arrive at the beginning of the time hori-
zon, then Algorithm 2 obtains optimal schedules that have
zero load variance. In contrast, when there are base load
prediction errors and stochastic deferrable load arrivals, the
expected load variance is given by the following theorem.

To state the result, define F (t) :=
∑t
s=0 f(s) for t =

0, . . . , T and recall that {f(t)}∞t=−∞ is the causal filter mod-
eling the correlation of base load.

Theorem 2. Consider an instance where ODLC-t admits
a t-valley-filling solution at every time t = 1, . . . , T . Then,
the expected load variance obtained by Algorithm 2 is

E(V ) =
s2

T

T∑
t=2

1

t
+
σ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
. (14)

The proof of this theorem can be found in Section A.4.
The novel aspect of Theorem 2 is the fact that it explic-

itly and precisely states the interaction of the variability
of the predictions of base load (σ) and deferrable loads (s)
with the horizon length T . Further, it highlights the role of
the impulse response of the causal filter through F . More
specifically, the expected load variance E(V ) tends to 0 as
the uncertainties in base load and deferrable load arrivals
vanish, i.e., σ → 0 and s→ 0.

Corollary 2. Consider an instance where ODLC-t ad-
mits a t-valley-filling solution at every time t = 1, . . . , T .
Then, E(V )→ 0 as σ → 0 and s→ 0.

Another remark about Theorem 2 is that the two terms
in the expression (14) for the expected load variance E(V )
correspond to the impact of uncertainties in deferrable load
prediction and base load prediction, respectively. In par-
ticular, Theorem 2 is proven in Section A.4 by analyzing
these two cases separately and then combining the results.
Specifically, the following two lemmas are the key pieces in
the proof of Theorem 2, but are also of interest in their own
right. The lemmas are proven in Section A.2 and Section
A.3, respectively.

Lemma 1. Consider an instance where ODLC-t admits a
t-valley-filling solution at every time t = 1, . . . , T . If there
is no base load prediction error, i.e., bt = b for t = 1, . . . , T ,
then the expected load variance obtained by Algorithm 2 is

E(V ) = s2
∑T
t=2

1
t

T
≈ s2 lnT

T
.

Lemma 2. Consider an instance where ODLC-t admits a
t-valley-filling solution at every time t = 1, . . . , T . If there
are no deferrable load arrivals after time 1, i.e., N(t) = N
for t = 1, . . . , T , then the expected load variance obtained by
Algorithm 2 is

E(V ) =
σ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
.

Lemma 1 highlights that the more uncertainty in deferrable
load arrivals, i.e., the larger s, the larger the expected load
variance E(V ). On the other hand, the longer the time hori-
zon T , the smaller the expected load variance E(V ).

Similarly, Lemma 2 highlights that a larger base load pre-
diction error, i.e., a larger σ, results in a larger expected load
variance E(V ). However, if the impulse response {f(t)}∞t=−∞
of the modeling filter of the base load decays fast enough
with t, then the following corollary highlights that the ex-
pected load variance actually tends to 0 as time horizon T
increases despite the uncertainty of base load predictions.
The corollary is proven in the extended version of this pa-
per [15].

Corollary 3. Consider an instance where ODLC-t ad-
mits a t-valley-filling solution at every time t = 1, . . . , T .
If there are no deferrable load arrivals after time 1, i.e.,
N(t) = N for t = 1, . . . , T , and |f(t)| ∼ O(t−1/2−α) for
some α > 0, then the expected load variance obtained by
Algorithm 2 satisfies E(V )→ 0 as T →∞.



The improvement of Algorithm 2 over static control.
The goal of this section is to quantify the improvement

of real-time control via Algorithm 2 over the optimal static
(open-loop) control. To be more specific, we compare the
expected load variance E(V ) obtained by the real-time con-
trol Algorithm 2, with the expected load variance E(V ′)
obtained by the optimal static control, which only uses base
load prediction at the beginning of the time horizon (i.e., b̄)
to compute deferrable load schedules. We assume N(t) = N
for t = 1, . . . , T in this section since otherwise any static con-
trol cannot obtain a schedule for all deferrable loads. Thus,
the interpretation of the results that follow is as a quan-
tification of the value of incorporating updated based load
predictions into the deferrable load controller.

To begin the analysis, note that E(V ) for this setting is
given in Lemma 2. Further, it can be proven that the optimal
static control is to solve ODLC with b replaced by b̄ to obtain
a deferrable load schedule, and the expected load variance
E(V ′) it obtains is given by the following lemma, which is
proven in the extended version of this paper [15].

Lemma 3. Consider an instance where ODLC (with b re-
placed by b̄) admits a valley-filling solution. If there is no
stochastic load arrival, i.e., N(t) = N for t = 1, . . . , T ,
then the expected load variance E(V ′) obtained by the op-
timal static control is

E(V ′) =
σ2

T 2

T−1∑
t=0

(
T (T − t)f2(t)− F 2(t)

)
.

Next, comparing E(V ) and E(V ′) given in Lemma 2 and
3 shows that Algorithm 2 always obtains a smaller expected
load variance than the optimal static control. Specifically,
we prove the following in the extended version of this paper
[15].

Corollary 4. Consider an instance where ODLC (with
b replaced by b̄) admits a valley-filling solution and ODLC-t
admits a t-valley-filling solution at every time t = 1, . . . , T .
If there is no deferrable load arrival after time 1, i.e., N(t) =
N for t = 1, . . . , T , then

E(V ′)−E(V ) =
σ2

T

T∑
t=1

1

2t

t−1∑
m=0

t−1∑
n=0

(f(m)− f(n))2 ≥ 0.

Corollary 4 highlights that Algorithm 2 is guaranteed to
obtain a smaller expected load variance than the optimal
static control. The next step is to quantify how much smaller
E(V ) is in comparison with E(V ′).

To do this we compute the ratio E(V ′)/E(V ). Unfortu-
nately, the general expression for the ratio is too complex
to provide insight, so we consider two representative cases
for the impulse response f(t) in the causal filter in order to
obtain insights. Specifically, we consider examples (i) and
(ii) from Section 2.1. Briefly, in (i) f(t) is finite and in (ii)
f(t) is infinite but decays exponentially in t. For these two
cases, the ratio E(V ′)/E(V ) is summarized in the following
corollaries, which are proven in the extended version [15].

Corollary 5. Consider an instance where ODLC (with
b replaced by b̄) admits a valley-filling solution and ODLC-t
admits a t-valley-filling solution at every time t = 1, . . . , T .
If there is no deferrable load arrival after time 1, i.e., N(t) =
N for t = 1, . . . , T , and there exists ∆ > 0 such that

f(t) =

{
1 if 0 ≤ t < ∆

0 otherwise,

then

E(V ′)

E(V )
=

T/∆

ln(T/∆)

(
1 +O

(
1

ln(T/∆)

))
.

Corollary 6. Consider an instance that ODLC (with b
replaced by b̄) admits a valley-filling solution and ODLC-t
admits a t-valley-filling solution at every time t = 1, . . . , T .
If there is no deferrable load arrival after time 1, i.e., N(t) =
N for t = 1, . . . , T , and there exists a ∈ (0, 1) such that

f(t) =

{
at if t ≥ 0

0 otherwise,

then

E(V ′)

E(V )
=

1− a
1 + a

T

lnT

(
1 +O

(
ln lnT

lnT

))
.

Corollary 5 highlights that, in the case where f is finite,
if we define λ = T/∆ as the ratio of time horizon to filter
length, then the load reduction roughly scales as λ/ ln(λ).
Thus, the longer the time horizon is in comparison to the
filter length, the larger expected load variance reduction we
obtain from using Algorithm 2 as compared with the optimal
static control.

Similarly, Corollary 6 highlights that, in the case where
f is infinite and exponentially decaying, the expected load
variance reduction scales with T as T/ lnT with coefficient
(1−a)/(1+a). Thus, the smaller a is, which means the faster
f dies out, the more load variance reduction we obtain by
using real-time control. This is similar to having a smaller
∆ in the previous case.

5. EXPERIMENTAL RESULTS
In this section we use trace-based experiments in order to

explore the generality of the analytic results in the previ-
ous section. In particular, the results in the previous section
precisely characterize the expected load variance resulting
from Algorithm 2 as a function of prediction uncertainties
and quantify the improvement from the application of Algo-
rithm 2 over the optimal static (open-loop) controller. How-
ever, the analytic results necessarily make assumptions on
the form of the uncertainties. Therefore, it is important
to assess the performance of the algorithm using data from
real-world scenarios.

5.1 Experimental setup
The numerical experiments we perform use a time horizon

of 24 hours, from 20:00 to 20:00 on the following day. The
time slot length is 10 minutes, which is the granularity of
the data we have obtained about renewable generation.

Base load.
Recall that base load is a combination of non-deferrable

load and renewable generation. The non-deferrable load
traces used in the experiments come from the average resi-
dential load in the service area of Southern California Edison
in 2012 [27]. In the simulations, we assume that the non-
deferrable load is precisely known so that uncertainties in
the base load only come from renewable generation. In par-
ticular, non-deferrable load over the time horizon of a day
is taken to be the average over the 366 days in 2012 as in
Figure 2(a), and assumed to be known to the utility at the
beginning of the time horizon. In practice, non-deferrable
load at the substation feeder level can be predicted within
1–3% root-mean-square error looking 24 hours ahead [12].

The renewable generation traces we use come from the
10-minute historical data for total wind power generation of
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Figure 2: Illustration of the traces used in the experiments. (a) shows the average residential load in the
service area of Southern California Edison in 2012. (b) shows the total wind power generation of the Alberta
Electric System Operator scaled to represent 20% penetration. (c) shows the normalized root-mean-square
wind prediction error as a function of the time looking ahead for the model used in the experiments.

the Alberta Electric System Operator from 2004 to 2009 [3].
In the simulations, we scale the wind power generation so
that its average over the 6 years corresponds to a number
of penetration levels in the range between 5% and 30%, and
pick the wind power generation of a randomly chosen day as
the renewable generation during each run. Figure 2(b) shows
the wind power generation for four representative days, one
for each season, after scaling to 20% penetration.

We assume that the renewable generation is not precisely
known until it is realized, but that a prediction of the gen-
eration, which improves over time, is available to the utility.
The modeling of prediction evolution over time is according
to a martingale forecasting process [17,18], which is a stan-
dard model for an unbiased prediction process that improves
over time.

Specifically, the prediction model is as follows: For wind
generation w(τ) at time τ , the prediction error wt(τ)−w(τ)
at time t < τ is the sum of a sequence of independent random
variables ns(τ) as

wt(τ) = w(τ) +

τ∑
s=t+1

ns(τ), 0 ≤ t < τ ≤ T.

Here w0(τ) is the wind prediction without any observation,
i.e., the expected wind generation w̄(τ) at the beginning of
the time horizon (used by static control).

The random variables ns(τ) are assumed to be Gaussian
with mean 0. Their variances are chosen as

E(n2
s(τ)) =

σ2

τ − s+ 1
, 1 ≤ s ≤ τ ≤ T

where σ > 0 is such that the root-mean-square prediction er-
ror
√

E(w0(T )− w(T ))2 looking T time slots (i.e., 24 hours)
ahead is 0%–22.5% of the nameplate wind generation ca-
pacity.2 According to this choice of the variances of ns(τ),
root-mean-square prediction error only depends on how far
ahead the prediction is, in particular as in Figure 2(c). This
choice is motivated by [16].

Deferrable loads.
For simplicity, we consider the hypothetical case where all

deferrable loads are electric vehicles. Since historical data
for electric vehicle usage is not available, we are forced to

2Average wind generation is 15% of the nameplate capacity,
so the root-mean-square prediction error looking T time slots
ahead is 0%–150% the average wind generation.

use synthetic traces for this component of the experiments.
Specifically, in the simulations the electric vehicles are con-
sidered to be identical, each requests 10kWh electricity by
a deadline 8 hours after it arrives, and each must consume
power at a rate within [0, 3.3]kW after it arrives and before
its deadline.

In the simulations, the arrival process starts at 20:00 and
ends at 12:00 the next day so that the deadlines of all electric
vehicles lie within the time horizon of 24 hours. In each time
slot during the arrival process, we assume that the num-
ber of arriving electric vehicles is uniformly distributed in
[0.8λ, 1.2λ], where λ is chosen so that electric vehicles (on
average) account for 5%–30% of the non-deferrable loads.
While this synthetic workload is simplistic, the results we
report are representative of more complex setups as well.

Uncertainty about deferrable load arrivals is captured as
follows. The prediction E(A(t)) of future deferrable load
total energy request is simply the arrival rate λ times the
length of the rest of the arrival process T ′ − t where T ′ is
the end of the arrival process (12:00), i.e.,

E(A(t)) = λ(T ′ − t), t = 1, . . . , T ′.

If t > T ′, i.e., the deferrable load arrival process has ended,
then E(A(t)) = 0.

Baselines for comparison.
Our goal in the simulations is to contrast the performance

of Algorithm 2 with a number of common benchmarks to
tease apart the impact of real-time control and the impact
of different forms of uncertainty. To this end, we consider
four controllers in our experiments:

(i) Offline optimal control: The controller has full knowl-
edge about the base load and deferrable loads, and
solves the ODLC problem offline. It is not realistic in
practice, but serves as a benchmark for the other con-
trollers since offline optimal control obtains the small-
est possible load variance.

(ii) Static control with exact deferrable load arrival infor-
mation: The controller has full knowledge about de-
ferrable loads (including those that have not arrived),
but uses only the prediction of base load that is avail-
able at the beginning of the time horizon to compute a
deferrable load schedule that minimizes the expected
load variance. This static control is still unrealistic
since a deferrable load is known only after it arrives.
But, this controller corresponds to what is considered



in prior works, e.g., [13,14,24].
(iii) Real-time control with exact deferrable load arrival in-

formation. The controller has full knowledge about de-
ferrable loads (including those that have not arrived),
and uses the prediction of base load that is available
at the current time slot to update the deferrable load
schedule by minimizing the expected load variance to
go, i.e., Algorithm 2 with N(t) = N for t = 1, . . . , T .
The control is unrealistic since a deferrable load is
known only after it arrives; however it provides the
natural comparison for case (ii) above.

(iv) Real-time control without exact deferrable load arrival
information, i.e., Algorithm 2. This corresponds to
the realistic scenario where only predictions are avail-
able about future deferrable loads and base loads. The
comparison with case (iii) highlights the impact of de-
ferrable load arrival uncertainties.

The performance measure that we show in all plots is the
“suboptimality” of the controllers, which we define as

η :=
V − V opt

V opt
,

where V is the load variance obtained by the controller and
V opt is the load variance obtained by the offline optimal, i.e.,
case (i) above. Thus, the lines in the figures correspond to
cases (ii)-(iv).

5.2 Experimental results
Our experimental results focus on two main goals: (i) un-

derstanding the impact of prediction accuracy on the ex-
pected load variance obtained by deferrable load control
algorithms, and (ii) contrasting the real-time (closed-loop)
control of Algorithm 2 with the optimal static (open-loop)
controller. We focus on the impact of three key factors: wind
prediction error, the penetration of deferrable load, and the
penetration of renewable energy.

The impact of prediction error.
To study the impact of prediction error, we fix the pene-

tration of both renewable generation (wind) and deferrable
loads at 10% of non-deferrable load, and simulate the load
variance obtained under different levels of root-mean-square
wind prediction errors (0%–22.5% of the nameplate capac-
ity looking 24 hours ahead). The results are summarized in
Figure 3(a). It is not surprising that suboptimality of both
the static and the real-time controllers that have exact infor-
mation about deferrable load arrivals is zero when the wind
prediction error is 0, since there is no uncertainty for these
controllers in this case.
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(a) Wind and deferrable load
penetration are both 10%.
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(b) Wind and deferrable load
penetration are both 20%.

Figure 3: Illustration of the impact of wind predic-
tion error on suboptimality of load variance.

As prediction error increases, the suboptimality of both
the static and the real-time control increases. However, no-

tably, the suboptimality of real-time control grows much
more slowly than that of static control, and remains small
(<4.7%) if deferrable load arrivals are known, over the whole
range 0%–22.5% of wind prediction error. At 22.5% predic-
tion error, the suboptimality of static control is 4.2 times
that of real-time control. This highlights that real-time con-
trol mitigates the influence of imprecise base load prediction
over time.

Moving to the scenario where deferrable load arrivals are
not known precisely, we see that the impact of this inexact
information is less than 6.6% of the optimal variance. How-
ever, real-time control yields a load variance that is surpris-
ingly resilient to the growth of wind prediction error, and
eventually beats the optimal static control at around 10%
wind prediction error, even though the optimal static con-
trol has exact knowledge of deferrable loads and the adaptive
control does not.

As prediction error increases, the suboptimality of the
real-time control with or without deferrable load arrival in-
formation gets close, i.e., the benefit of knowing additional
information on future deferrable load arrivals vanishes as
base load uncertainty increases. This is because the addi-
tional information is used to overfit the base load prediction
error.

The same comparison is shown in Figure 3(b) for the case
where renewable and deferrable load penetration are both
20%. Qualitatively the conclusions are the same, however at
this higher penetration the contrast between the resilience
of adaptive control and static control is magnified, while
the benefit of knowing deferrable load arrival information
is minified. In particular, real-time control without arrival
information beats static control with arrival information, at
a lower (around 7%) wind prediction error, and knowing
deferrable load arrival information does not reduce subopti-
mality of real-time control with 22.5% wind prediction error.

The impact of deferrable load penetration.
Next, we look at the impact of deferrable load penetration

on the performance of the various controllers. To do this, we
fix the wind penetration level to be 20% and wind predic-
tion error looking 24 hours ahead to be 18%, and simulate
the load variance obtained under different deferrable load
penetration levels (5%–30%). The results are summarized
in Figure 4(a).
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(a) Impact of deferrable load
penetration
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(b) Impact of wind penetra-
tion

Figure 4: Suboptimality of load variance as a func-
tion of (a) deferrable load penetration and (b) wind
penetration. In (a) the wind penetration is 20%
and in (b) the deferrable load penetration is 20%.
In both, the wind prediction error looking 24 hours
ahead is 18%.

Not surprisingly, if future deferrable loads are known and
uncertainty only comes from base load prediction error, then
the suboptimality of real-time control is very small (<11.2%)



over the whole range 5%–30% of deferrable load penetration,
while the suboptimality of static control increases with de-
ferrable load penetration, up to as high as 166% (14.9 times
that of real-time control) at 30% deferrable load penetration.

However, without knowing future deferrable loads, the
suboptimality of real-time control increases with the de-
ferrable load penetration. This is because larger amount of
deferrable loads introduces larger uncertainties in deferrable
load arrivals. But the suboptimality remains smaller than
that of static control over the whole range 5%–30% of de-
ferrable load penetration. The highest suboptimality 25.7%
occurs at 30% deferrable load penetration, and is less than
1/6 of the suboptimality of static control, which assumes
exact deferrable load arrival information.

The impact of renewable penetration.
Finally, we study the impact of renewable penetration.

To do this we fix the deferrable load penetration level to be
20% and the wind prediction error looking 24 hours ahead
to be 18%, and simulate the load variance obtained by the 4
test cases under different wind penetration levels (5%–25%).
The results are summarized in Figure 4(b).

A key observation is that if future deferrable loads are
known and uncertainty only comes from base load predic-
tion error, then the suboptimality of real-time control grows
much slower than that of static control, as wind penetration
level increases. As explained before, this highlights that real-
time control mitigates the impact of base load prediction
error over time. In fact, the suboptimality of real-time con-
trol is small (<15%) over the whole range 5%–25% of wind
penetration levels. Of course, without knowledge of future
deferrable loads, the suboptimality of real-time control be-
comes bigger. However, it still eventually outperforms the
optimal static controller at around 6% wind penetration, de-
spite the fact that the optimal static controller is using exact
information about deferrable loads.

6. CONCLUDING REMARKS
We have proposed a real-time algorithm for decentralized

deferrable load control that can schedule a large number of
deferrable loads to compensate for the random fluctuations
in renewable generation. At any time, the algorithm in-
corporates updated predictions about deferrable loads and
renewable generation to minimize the expected load vari-
ance to go. Further, we have derived an explicit expression
for the expected aggregate load variance obtained by the al-
gorithm by modeling the base load prediction updates as a
Wiener filtering process. Additionally, we have highlighted
the importance of the expression by using it to evaluate the
improvement of real-time control over static control. Inter-
estingly, the sub-optimality of static control is O(T/ lnT )
times that of real-time control in two representative cases of
base load prediction updates. The qualitative insights from
the analytic results were validated using trace-based simu-
lations, which confirm that the algorithm has significantly
smaller sub-optimality than the optimal static control.

There remain many interesting open questions on algo-
rithm design for deferrable loads. For example, is it possible
to reduce the communication and computation requirements
of the proposed algorithm by assuming achievability of t-
valley-filling? Is it possible to extend the algorithm to a
receding horizon implementation? Additionally, it is inter-
esting to generalize the technique for incorporating predic-
tion evolution used here into algorithms for other demand
response settings.
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APPENDIX
A. PROOFS

In this section, we only include proofs of the main results
due to space restrictions. The remainder of the proofs can
be found in the extended version [15].

A.1 Proof of Theorem 1
For brevity and without loss of generality, we prove The-

orem 1 for t = 1 only. Thus, we can abbreviate bt and N(t)
by b and N respectively without introducing confusion.

For feasible p, q to ODLC-t and p = (p1, . . . , pN ), define

L(p, q) =

T∑
τ=1

(
b(τ) +

N∑
n=1

pn(τ) + q(τ)

)2

.

Since the sum of the aggregate load
∑T
τ=1 d(τ) is a constant,

minimizing the `2 norm of the aggregate load is equivalent
to minimizing its variance. Hence, if subject to the same
constraints, the minimizer of L is also the solution to ODLC-
t. According to the proof of Proposition 1 in [13], we have

L(p(k+1), q(k)) ≤ L(p(k), q(k))

for k ≥ 0, and the equality is attained if and only if p(k+1) =
p(k) and p(k) minimizes L(p, q(k)) over all feasible p, i.e., (the
first order optimality condition)〈

b+

N∑
n=1

p(k)n + q(k), p′n − p(k)n

〉
≥ 0

for n = 1, . . . , N and all feasible p′n. According to Step (ii)
of Algorithm 2, it is straightforward that

L(p(k+1), q(k+1)) ≤ L(p(k+1), q(k))

for k ≥ 0, and the equality is attained if and only if q(k+1) =
q(k) and q(k) minimizes L(p(k+1), q) over all feasible q, i.e.,
(the first order optimality condition)〈

b+

N∑
n=1

p(k+1)
n + q(k), q′ − q(k)

〉
≥ 0

for all feasible q′. It then follows that

L(p(k+1), q(k+1)) ≤ L(p(k), q(k))

and the equality if attained if and only if (p(k+1), q(k+1)) =

(p(k), q(k)), and〈
b+

N∑
n=1

p(k)n + q(k), p′n − p(k)n

〉
≥ 0,〈

b+

N∑
n=1

p(k)n + q(k), q′ − q(k)
〉
≥ 0

for all feasible p and q, i.e., (p(k), q(k)) minimizes L(p, q).

Then by Lasalle’s Theorem [29], we have d(p(k),O(t)) → 0
as k →∞. �

A.2 Proof of Lemma 1
When bt = b and E(a(t)) = λ for t = 1, . . . , T , the model

(13) for Algorithm 2 reduces to

d(t) =
1

T − t+ 1

 T∑
τ=t

b(τ) + λ(T − t) +

N(t)∑
n=1

Pn(t)

 (15)

for t = 1, . . . , T . Then

(T − t+ 1)d(t) =

T∑
τ=t

b(τ) + λ(T − t) +

N(t)∑
n=1

Pn(t)

(T−t+2)d(t−1) =

T∑
τ=t−1

b(τ)+λ(T−t+1)+

N(t−1)∑
n=1

Pn(t−1)

for t = 2, . . . , T . Subtract the two equations and simplify

using the fact that b(t− 1) +
∑N(t−1)
n=1 (Pn(t− 1)− Pn(t)) =

b(t− 1) +
∑N(t−1)
n=1 pn(t− 1) = d(t− 1) and the definition of

a(t) to obtain

d(t)− d(t− 1) =
1

T − t+ 1
(a(t)− λ)

for t = 2, . . . , T . Substituting t = 1 into (15), it can be

verified that d(1) = λ+
∑T
τ=1 b(τ)/T+(a(1)−λ)/T , therefore

d(t) = λ+
1

T

T∑
τ=1

b(τ) +

t∑
τ=1

1

T − τ + 1
(a(τ)− λ)

for t = 1, . . . , T . The average aggregate load is

u =
1

T

T∑
t=1

d(t) = λ+
1

T

(
T∑
τ=1

b(τ) +

T∑
τ=1

(a(τ)− λ)

)
.



Hence,

E(d(t)− u)2

= E

(
t∑

τ=1

1

T − τ + 1
(a(τ)− λ)− 1

T

T∑
τ=1

(a(τ)− λ)

)2

= E

(
t∑

τ=1

τ − 1

T (T − τ + 1)
(a(τ)− λ)− 1

T

T∑
τ=t+1

(a(τ)− λ)

)2

=
s2

T 2

(
t∑

τ=1

(τ − 1)2

(T − τ + 1)2
+ T − t

)
for t = 1, . . . , T . The last equality holds because (a(τ)− λ)
are independent for all τ and each of them have mean zero
and variance s2. It follows that

E(V ) =
1

T

T∑
t=1

E(d(t)− u)2

=
s2

T 3

(
T∑
t=1

t∑
τ=1

(τ − 1)2

(T − τ + 1)2
+

T∑
t=1

(T − t)

)

=
s2

T 3

(
T∑
τ=1

(τ − 1)2

T − τ + 1
+

T∑
t=1

(T − t)

)

=
s2

T 3

(
T∑
t=1

(T − t)2

t
+

T∑
t=1

(T − t)t
t

)

= s2
∑T
t=2

1
t

T
∼ s2 lnT

T
. �

A.3 Proof of Lemma 2
In the case where no deferrable arrival after t = 1, i.e.,

N(t) = N for t = 1, . . . , T , the model (13) for Algorithm 2
reduces to

(T − t+ 1)d(t) =

T∑
τ=t

bt(τ) +

N∑
n=1

Pn(t) (16)

for t = 1, . . . , T . Substitute t by t− 1 to obtain

(T − t+ 2)d(t− 1) =

T∑
τ=t−1

bt−1(τ) +

N∑
n=1

Pn(t− 1)

for t = 2, . . . , T . Subtract the two equations to obtain

(T − t+ 1)d(t)− (T − t+ 2)d(t− 1)

=
T∑
τ=t

e(t)f(τ − t)− b(t− 1)−
N∑
n=1

pn(t− 1)

= e(t)F (T − t)− d(t− 1),

which implies

d(t)− d(t− 1) =
1

T − t+ 1
e(t)F (T − t)

for t = 2, . . . , T . Substituting t = 1 into (16) and recalling
the definition of bt in (1), it can be verified that

d(1) =
1

T

(
N∑
n=1

Pn +

T∑
τ=1

b̄(τ)

)
+

1

T
e(1)F (T − 1).

Therefore,

d(t) =
1

T

(
N∑
n=1

Pn +

T∑
τ=1

b̄(τ)

)
+

t∑
τ=1

1

T − τ + 1
e(τ)F (T − τ)

for t = 1, . . . , T . The average aggregate load is

u =
1

T

(
N∑
n=1

Pn +

T∑
t=1

b̄(t)

)
+

1

T

T∑
τ=1

e(τ)F (T − τ).

Hence,

E(d(t)− u)2

= E

(
t∑

τ=1

1

T − τ + 1
e(τ)F (T − τ)−

T∑
τ=1

1

T
e(τ)F (T − τ)

)2

= E

(
t∑

τ=1

τ − 1

T (T − τ + 1)
e(τ)F (T − τ)

−
T∑

τ=t+1

1

T
e(τ)F (T − τ)

)2

=
σ2

T 2

(
t∑

τ=1

(τ − 1)2

(T − τ + 1)2
F 2(T − τ) +

T∑
τ=t+1

F 2(T − τ)

)
for t = 1, . . . , T . The last equality holds because e(τ) are
uncorrelated random variables with mean zero and variance
σ2. It follows that

E(V ) =
1

T

T∑
t=1

E(d(t)− u)2

=
σ2

T 3

T∑
t=1

(
t∑

τ=1

(τ − 1)2

(T − τ + 1)2
F 2(T − τ) +

T∑
τ=t+1

F 2(T − τ)

)

=
σ2

T 3

T∑
τ=1

F 2(T − τ)
(τ − 1)2

T − τ + 1
+
σ2

T 3

T∑
τ=2

(τ − 1)F 2(T − τ)

=
σ2

T 2

T∑
τ=1

F 2(T − τ)
τ − 1

T − τ + 1
=
σ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
.�

A.4 Proof of Theorem 2
Similar to the proof of Lemma 1 and 2, use the model (13)

to obtain

d(t) = λ+
1

T

T∑
τ=1

b̄(τ) +

t∑
τ=1

1

T − τ + 1
(e(τ)F (T − τ) + a(τ)− λ)

for t = 1, . . . , T and

u = λ+
1

T

T∑
τ=1

b̄(τ) +

T∑
τ=1

1

T
(e(τ)F (T − τ) + a(τ)− λ) .

Hence,

E(d(t)− u)2

= E

(
t∑

τ=1

1

T − τ + 1
e(τ)F (T − τ)−

T∑
τ=1

1

T
e(τ)F (T − τ)

)2

+E

(
t∑

τ=1

1

T − τ + 1
(a(τ)− λ)−

T∑
τ=1

1

T
(a(τ)− λ)

)2

.

The first term is exactly that in Lemma 2, and the second
term is exactly that in Lemma 1. Hence, the expected load
variance is

E(V ) =
σ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
+
s2

T

T∑
t=2

1

t
. �


