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Abstract—Electric vehicles (EVs) offer an attractive long-term
solution to reduce the dependence on fossil fuel and greenhouse
gas emission. At the same time, charging a large fleet of EVs
distributed across the residential area poses a challenge for the
distribution network. In this paper, we formulate this problem
by building on the optimal power flow (OPF) framework to
model the network constraints that arises from charging EVs
at different locations. To overcome the computational challenge
when the control horizon is long, we study a nested optimization
approach to decompose the joint OPF and EV charging problem.
We characterize the optimal EV charging schedule to be a valley-
filling profile, which allows us to develop an efficient offline
algorithm with significantly lower computational complexity
compared to centralized interior point solvers. Furthermore,
we propose a decentralized online algorithm that dynamically
tracks the valley-filling profile. Our algorithms are evaluated on
the IEEE 14 bus system with real residential load profiles, and
the simulations show that our online algorithm performs almost
optimally under different settings.

Index Terms—Optimal power flow, electric vehicle charging,
valley-filling, online algorithm, convex optimization.

I. INTRODUCTION

Electric vehicles (EVs) are getting more popular as a long-
term vehicular technology in order to reduce the dependence
on fossil fuel and the emission of greenhouse gases. However,
as EV penetration increases, uncoordinated charging can lead
to additional power losses and unacceptable voltage variation
that may overload the power grid [1]. To tackle this problem,
we can increase the power delivery capacity to deal with
the new EV peak demands, but this will lead to significant
infrastructure cost. On the other hand, we can adopt a “smart
grid” solution, which allows EVs to communicate with the
utility that in turn coordinates their charging activities. Besides
preventing grid overload, a coordinated EV charging can
improve frequency regulation [2], smooth out the generation
intermittency from renewables, and increase the efficiency in
electricity usage [3], [4].

In this paper, we consider two types of load that are
connected to the power network:
• Price-inelastic load: The exact power requested must

be provided. This corresponds to standard loads in a
conventional grid such as lighting and heating.
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• Price-elastic load: The power delivered to this type
of load can vary depending on the current cost and a
deadline. An example is charging and recharging of EV
batteries.

By considering these two types of loads, we study two key
problems: First, how to minimize the total cost of power
generation and EV charging? Second, how to deal with un-
certainties in price-inelastic load in the online setting? To
take into account the physical constraints in a power grid, we
leverage the well-known optimal power flow (OPF) problem
and consider its time-dependent extension, i.e., a multi-period
OPF.

The OPF problem optimizes the operation of a power grid
subject to the voltage constraints, line constraints and power
balance constraints. However, the OPF is nonconvex and NP-
hard in general [5]. Recently, it has been shown that most
practical power configurations exhibit a surprisingly useful
property that enables the OPF problem to be exactly solved
by solving its convex relaxations under some conditions [5]–
[8]. This convex relaxation methodology leads to the design of
efficient polynomial time algorithms and can also be used to
decompose the OPF into simpler subproblems, e.g., a multi-
period OPF with energy storage [9], [10].

A. Summary of Contributions

In this paper, we extend the OPF problem to a time-
dependent joint OPF-EV charging problem to account for the
price-elastic load. We leverage the zero duality gap result in
[5] to develop both offline and online algorithms that solve this
joint OPF-EV charging optimization problem. To this end, we
propose a nested optimization approach that decomposes the
joint OPF-EV charging problem into separable subproblems,
and then solve the decomposed problem using a nonsmooth
separable programming technique. The main contribution of
the paper are as follows:

1) We characterize the optimal solution to be valley-filling.
This valley-filling characterization holds for all the net-
work configurations that guarantee the zero duality gap
condition in the OPF problem.

2) We propose an offline algorithm that can solve the joint
OPF-EV charging problem with a computational com-
plexity significantly lower than the centralized interior
point solvers.

3) To account for the causality constraint from the price-
inelastic load, we propose an online algorithm that
dynamically tracks this valley-filling characteristic. We
show that our online algorithm can be easily imple-
mented in a decentralized manner. Simulation results
show that the performance of our online algorithm is
near optimal.
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There is a growing literature on various aspects of the
EV charging problem. For example, the problem of charging
EVs at centrally-managed large scale charging facilities is
considered in [11], [12] by assuming arbitrary EV load arrival.
The authors in [11], [12] design algorithm to achieve the best
competitive ratio against the optimal offline problem; Exam-
ples of distributed EV charging protocols for residential areas
is considered in [13], [14], where the goal of optimization is
to minimize the operation cost. The authors in [15] propose
distributed charging algorithm to maximize user utility and
achieve proportional fairness. The integration of renewable
energy in EV charging is considered in [11], [16]. The authors
of [17].The authors in [9] formulate an offline EV charging
problem using the full power flow constraints and propose to
solve this centralized problem using semidefinite programming
(SDP).

This work falls into the category of online distributed
control for the EV charging problem from the perspective of
the utility. The utility controls the elastic load via demand
response (DR) programs. Common approaches to demand
response include direct load control (DLC) and time of use
based pricing. An overview of demand response can be found
in [18]. In particular, our work in paper focuses on the DLC
approach, where EV owners are offered monetary rewards
for allowing their EVs to respond to utility control signals.
The cost we seek to minimize is the total cost of power grid
operation and the charging costs of EVs. The power flow
constraints that we use is similar to that of [9], but we develop
simple distributed control algorithms that have significantly
lower computational complexity than centralized SDP solvers.
An aggregate valley-filling characterization for optimal EV
charging profile is proposed in [13] when the underlying
network model is ignored. Our optimality characterization
applies to a more general setting by taking the underlying
power flow optimization into account. A preliminary version
of this work has appeared in [19], and this paper expands
on [19] to provide new analytical results on the feasibility
and performance of our online algorithm. Also, we conduct
additional numerical experiments under different settings.

B. Assumptions
We now make the following assumptions used in this paper.
• The EV charge points are equipped with low-latency two

way communication with the utility;
• The charging points have capabilities to compute and

adapt the charging rate at real time;
• The EV charging cost is time-invariant, i.e., the price per

unit energy is fixed at the beginning (different charging
stations can set different prices), but this cost does not
vary over the charging period;

• An EV battery can be charged at any rate between the
maximum and minimum charging rate1;

• The utility has an accurate estimate of the average EV
charging load over the control horizon, and the charging
points have good estimate of the maximum and minimum
charging rates available in the future.

We assume that the online information arises from the uncer-
tainties in the price-inelastic loads, but the EV charge points
have good estimation of the EV loads. This model is suitable

1This is a widely assumed model in the literature, see, e.g. [13], [15], [20].

TABLE I: Notations

N set of buses in the power grid network
G set of generator buses in the grid
L set of transmission lines in the network
Y admittance matrix

fk(·) convex cost function for bus k
p[t] + q[t]j vector of power generated at time t
p̃[t] + q̃[t]j vector of price-inelastic demand at time t

p̂[t] EV charging rate at time t
α real vector of EV charging cost

v[t] complex voltage vector at time t
W[t] v[t]v[t]∗

r̄[t], r[t] EV charging rate limits at time t
c vector of total EV energy demand
ek kth standard basis of R|N|

for utilities controlling the EV charging points at residential
area or parking facility near office building where the arrivals
and departures of EVs are relatively static in equilibrium.

In this paper, we only consider minimizing the cost related
to the active power. In a more general setting, utility may
also have cost associated to reactive power and use the DLC
approach to control devices that can absorb or inject active
and reactive power [21]. However, the characteristics and
constraints of these devices may be considerably different from
the EVs. For simplicity of presentation and analysis, we thus
focus only on the cost related to the active power.

The rest of the paper is organized as follows. The system
model and problem formulation is introduced in Section II.
The main analytical results and valley-filling algorithms are
given in section III and IV respectively. Numerical evaluations
are given in Section V. Finally, the conclusions are given in
Section VI. Table I summarizes the notation we use throughout
the paper. We use lower case letters for scalars, blocked lower
case letters for vectors, blocked upper case letter for matrices,
and use (x[t])j to represent the value of the jth component
of a vector x[t] at iteration t.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a discrete-time model where each time interval
represents the timescale at which the power grid adjusts its
power generation. The goal is to optimize the operation of the
power grid over a time-interval of interest t ∈ {0, 1, . . . , T}.
In practice, T could be the duration of a day and a timeslot t
could be in the order of minutes. In addition, we assume that
price-inelastic loads are fixed over each time interval [t, t+1].

A. EV Load Model
Suppose that each bus k ∈ N can connect to a price-

inelastic load and a price-elastic EV battery. Furthermore,
we assume that each EV battery can absorb or inject only
active power at an adjustable rate via a smart outlet. In the
following, we assume that each bus is connected to only one
EV battery. However, our results can be generalized to the case
when multiple EV batteries are co-located at the same bus. We
consider the following two types of constraints associated with
EV loads:

1) Charging rate Each smart outlet has a charging rate limit
at each time t [20], [22], hence for k ∈ N and t ∈
{1, 2, . . . , T − 1},

(r[t])k ≤ (p̂[t])k ≤ (r̄[t])k. (1)
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2) Deadline Each EV can have different arrival time
and deadline. We model these constraints by setting
(r[t])k = (r[t])k = 0 if EV has not arrived at bus k
at time t, or the charging deadline of EV at bus k has
passed.
Let Bk, sk(0), and ηk denote the battery capacity,
initial state of charge (SOC), and charging efficiency,
respectively. By the deadline T , the EV should be fully
charged, hence, ηk

∑T−1
t=1 (p̂[t])k∆t = Bk(1 − sk(0)).

Let Ck := Bk(1−sk(0))/(ηk∆t), then the EV charging
constraint is the following, for all k ∈ N

T−1∑
t=1

(p̂[t])k = ck. (2)

B. Network Structure

Consider a power network with a set of buses N :=
{1, . . . , n}, a set of generator buses G ⊆ N , and a set of
flow lines L ⊆ N ×N . Let zlm and ylm be the complex
impedance and admittance between bus l and m, respec-
tively, and we have ylm = 1

zlm
. Denote Y = (Ylm, 1 ≤

l,m ≤ n) as the admittance matrix and let column vectors
v = (V1, V2, . . . , V|N |)

T ∈ C|N | and i = (I1, I2, . . . , I|N |)
T ∈

C|N | be the voltage and current vectors, respectively. By
Ohm’s Law and Kirchoff’s Current Law, we have i = Yv.

Define ek to be the kth standard basis in RN , then the
power injection at bus k at time t can be written as

(v[t])k(i[t])k = Tr{v[t]v[t]∗Y ∗eke
∗
k} = Tr{W[t]Y ∗eke

∗
k}.

C. Joint OPF-EV Charging Optimization Problem

The OPF problem finds the stable operating point that min-
imizes an appropriate cost function, for example generation
cost or power loss, subject to certain physical constraints on
the power and voltage variables [23]. Using the EV load
model, we augment the OPF problem to the following time-
dependent joint OPF-EV charging optimization problem:

min
{W[t],p̂[t]}

T−1∑
t=1

∑
k∈G

fk((p[t])k) +

T−1∑
t=1

∑
k∈N

(α)k(p̂[t])k (3a)

s.t. Pmin
k ≤ (p[t])k ≤ Pmax

k , (3b)

Qmin
k ≤ (q[t])k ≤ Qmax

k , (3c)

(V min
k )2 ≤W[t]kk ≤ (V max

k )2, (3d)
(W[t]ll −W[t]lm)y∗lm ≤ Smax

lm , (3e)
Tr{W[t]Y∗eke

∗
k} = ((p[t])k − (p̂[t])k − (p̃[t])k)

+ ((q[t])k − (q̃[t])k)j, (3f)
W[t] � 0, (3g)
rank(W[t]) = 1, (3h)
T−1∑
t=1

p̂[t] = c, (3i)

r[t] ≤ p̂[t] ≤ r̄[t], (3j)

for every k ∈ N and (l,m) ∈ L, where (3b), (3c) are the
power generation constraints, (3d) is the voltage magnitude
constraint, (3e) is the line flow constraint, and (3f) is the power
balance constraint.

The cost term fk((p[t])k) can be considered as positive
convex cost or negative concave utility function as specified
in [7]. The objective function can be interpreted as social
welfare as it considers both the power generation cost and
the EV charging cost. The utility may offer minimizing the
EV charging cost as an added incentive for EV owners to join
the demand response program, but it can also set the charging
cost α to be 0 if it emphasizes only the power generation cost.

Although we can solve (3) exactly by an SDP relaxation of
the non-convex constraint (3h) [5] [6], this problem consists
of (T − 1) instances of individual OPF problems with time
varying constraints, and the decision variables are furthermore
coupled by the EV charging constraint (3i). Hence, there will
be O((|N |+ |L|)T ) variables in the dual SDP problem of (3).
For large T , the computational complexity of solving (3) as a
whole by centralized interior point solvers may be prohibitive
(the computational bottleneck of interior point solvers lies
in the inversion of the Hessian matrix when the problem
size scales up) [24], [25]. Hence, solving this problem using
centralized SDP solver is not scalable for large T . In the
following, we propose a way to efficiently solve (3) for large
T by decomposing it to smaller sub-problems.

III. OPTIMAL OFFLINE ALGORITHM FOR EV SCHEDULING
PROBLEM

In this section, we deal with the scalability problem of the
joint OPF-EV charging problem in the offline setting. Assum-
ing all the information about EV load and price-inelastic load
in the control horizon is available, we exactly characterize the
optimal EV charging profile and this characterization leads
us to decompose the time-dependent problem over time. For
clarity of presentation, the proofs of the theorems stated in the
subsequent sections are presented in the Appendix.

A. Decoupling Power Dispatching from EV Scheduling
While the optimization variables in the Joint OPF-EV charg-

ing problem (3) are W[t] and p̂[t], if the optimal charging
decision p̂∗[t] is known, then the remaining problem of finding
W∗[t] is separable in t. To show this, we define the following
function:

F (p̂∗[t] + p̃[t]) := min
W[t]

(∑
k∈N

fk((p[t])k)

)
(4)

s.t. (3b), (3c), . . . , (3h),

where F (p̂∗[t] + p̃[t]) returns the optimal value of the OPF
problem for a total demand (p̂∗[t]+p̃[t]). Given p̂∗[t], we can
find W∗[t] by solving (4) alone. Since (4) is essentially an
OPF problem with O(|N |+ |L|) variables in its convex dual,
we can solve each W∗[t] efficiently. What remains is to find
the optimal EV charging rate p̂∗[t], which can be written as
the optimal solution of the following EV scheduling problem:

min
p̂[t]

T−1∑
t=1

F (p̂[t] + p̃[t]) + α[t]Tp̂[t] (5a)

s.t. r[t] ≤ p̂[t] ≤ r̄[t] ∀t ∈ [1, T − 1], (5b)
T−1∑
t=1

p̂[t] = c. (5c)
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As will be shown below, F (·) is convex, and this important
property allows us to find the optimal solution p̂∗[t] without
having to solve W[t].

B. Convexity of F (·)
The following result is a direct consequence of the zero

duality gap property of the OPF problem, which reveals the
convexity of the decoupled function in (4).

Theorem 1. If the zero duality gap holds, then F : R|N | → R,
is a convex function.

Remark 1. Although F (·) is convex, it can be nonsmooth. In
general, F (·) is a pointwise supremum of convex functions.

In the following, we characterize the optimal solution of
(5) by making use of the convexity of F (·) only, and does not
make any assumption on its smoothness.

C. Characterization of optimal offline solution
By convexity of F , and suppose that the charging rate limits

are inactive, we can apply Jensen’s inequality and get the
following result:

Lemma 1. If ∀t, r[t] = −∞, r̄[t] =∞, then the EV scheduling
problem (5) has an optimal solution p̂[t] = a − p̃[t], where
a =

(∑T−1
t=1 p̂[t] + p̃[t]

)
/(T − 1) which is the average total

load of the control horizon.

In this case, the optimal solution is a flat profile, i.e.,
∀t, p̂[t]+p̃[t] is constant. Next, we consider the case where the
charging rate constraints can be active. The optimal solution
will then no longer be flat, but valley-filling as defined in the
following:

Definition 1. A charging profile is valley-filling, if there exists
a unique vector a, such that

p̂[t] = [a− p̃[t]]
r̄[t]
r[t] ,∀t, (6)

where [x]
u
l = max(l,min(x, u)).

In the definition, a can be seen as a valley level that p̂[t] +
p̃[t] tries to reach unless p̂[t] is constrained by r̄[t] or r[t].
A similar definition of valley-filling for EV scheduling can be
found in [13]. Interestingly, the valley-filling characterization
is reminiscent of the water-filling notion for power allocation
to maximize capacity in information theory [26].

The next result shows the optimality of a valley-filling
profile. It can be proved by using a substitution argument, i.e.,
if there is an optimal charging profile that is not valley-filling,
then by convexity of F , we can always construct a valley-
filling profile that has the same or lower objective value.

Theorem 2. For a general convex function F (·), a valley-
filling profile is optimal to the EV Scheduling problem (5).

The fact that we only need convexity of F (·) to prove
Theorem 2 implies that, a valley-filling profile is a minimizer
for any general convex objective, not just the objective of
joint OPF-EV charging optimization as defined in (3a). For
example, consider the following objective

T−1∑
t=1

F (p̂[t] + p̃[t]) =

T−1∑
t=1

(∑
k∈N

((p̂[t])k + (p̃[t])k)

)2

,

which is the square of the l2 norm of the aggregate load.
As the aggregate load is constant, Theorem 2 implies that a
valley-filling profile is also a load variance minimizing profile.

Next, we show the uniqueness of the valley level a. Note
that a must satisfy the following for j = 1, . . . , |N |:

min
t
{(p̃[t])j + (r[t])j} ≤ aj ≤ max

t
{(p̃[t])j + (r[t])j}, (7a)

T−1∑
t=1

p̂[t] =

T−1∑
t=1

[a− p̃[t]]
r̄[t]
r[t] = c. (7b)

Note that (7b) is a continuous and strictly increasing func-
tion for aj for all j. Since (7b) is continuous and strictly
increasing, we can find a unique a via the bisection method for
the offline case. This is presented in the following algorithm
with ε as an error tolerance level. We determine a in a
component-wise manner. Each iteration of the while loop
will halve the search space for aj , therefore the computational
complexity of the visection algorithm is low.

Algorithm 1 Valley-filling Bisection

1: ∀j,uj ← maxt{(p̃[t])j + (r[t])j};
lj ← mint{(p̃[t])j + (r[t])j};

2: for j = 1→ |N| do
3: while (‖uj − lj‖ ≥ ε) do
4: mj ← 1

2 (uj + lj);
5: if (

∑T−1
t=1 [mj − (p̃[t])j ]

(r̄[t])j
(r[t])j

> cj) then
6: uj ←mj ;
7: else
8: lj ←mj ;
9: a←m.

Once we have determined the value of a, the scheduling of
EV vehicle (solving p̂[t]) can now be done optimally in O(1)
time following the valley-filling characterization in Definition
1. Given the optimal p̂[t], the remaining optimization variables
W[t] become separable. The offline algorithm for the joint
OPF-EV charging problem (3) is shown in Algorithm 2.

Algorithm 2 Offline EV Scheduling

1: Utility computes the valley level a using Algorithm 1;
2: for t = 1→ T − 1 do
3: EVs update p̂[t] by valley-filling characterization in (6):

p̂[t] = [a− p̃[t]]
r̄[t]
r[t] ;

4: Utility solves the OPF problem F (p̂[t] + p̃[t]);

Algorithm 2 decomposes the joint OPF-EV charging prob-
lem (3) from an SDP with O((|N | + |L|)(T − 1)) variables
to (T − 1) SDPs each with O(|N | + |L|) variables. The
complexity of SDP interior point solvers grows superlinearly
with respect to the number of variables [24], [25], thus this
decomposition leads to a lower computational complexity.
We show this reduction in computational complexity via
simulation in section V-F.

IV. ONLINE ALGORITHM FOR EV SCHEDULING PROBLEM

In this section, we build on the optimal characterization of
EV charging schedule to design a practical online algorithm.
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Fig. 1: An illustration of information flow between the utility
and EV charge points at each time instance t, the utility
broadcast the current valley level to all EVs, and each EV
compute its charging rate and report back to the utility. Then
utility will use the information gathered for computing the
next valley level.

The description of our online EV scheduling algorithm is given
in Algorithm 3. The information flow between EVs and the
utility is illustrated in Fig. 1. Next we provide a narrative for
the consideration of its implementation.

Under a causality constraint, we only know p̃[t] at time
t. Therefore, in the online case, we cannot use the previous
bisection algorithm to find a. Instead, we propose an algorithm
that estimates the valley level, which is denoted by a′[t] and
adjusts it dynamically.

Let pE,pI denote the average EV load and price-inelastic
load respectively. From Lemma 1, the ideal valley level is
(pE + pI) if the charging rate constraints are not active. We
will use the estimate of (pE+pI) to set our initial valley level.
We know the value of average EV load, pE = c/(T − 1), but
the value of average inelastic load, pI has to be estimated,
possibly by learning from historical record of the price-
inelastic load.

Also, as we do not have complete information of the price-
inelastic load fluctuations, following the valley level charac-
terization of (6) alone may not guarantee that the resulting EV
charging profile can meet the charging deadline. To deal with
this, our online algorithm will detect the following events and
deal with them separately:
• If from time t onwards, even charging at the maximal

rate will not fully charge the EV battery at bus j, i.e.,
t∑

k=1

(p̂[k])j > cj −
T−1∑
l=t+1

(r[l])j , (8)

then it will raise an “undercharging” exception and
increase the current charging rate.

• If from time t onwards, even charging at the minimal rate
will overcharge the EV battery at bus j, i.e.,

t∑
k=1

(p̂[k])j > cj −
T−1∑
l=t+1

(r[l])j , (9)

then it will raise an “overcharging” exception and de-
crease the current charging rate.

Algorithm 3 Online EV Scheduling

1: Utility computes initial valley level

a′[1]← p̂E + p̂I

(p̂I, p̂E are estimations of pI,pE) and broadcast a′[1] to
all EVs;

2: for t = 1 to T − 1 do
3: for each EV j ∈ {1, . . . , |N |} do
4: Compute charging rate locally by

(p̂[t])j ←
(

[a′[t]− p̃[t]]
(r̄[t])
(r[t])

)
j

;

5: if (undercharging exception (8) for j is raised) then
6: Update the charging rate by

(p̂[t])j ← cj −
T−1∑
l=t+1

(r̄[l])j −
t−1∑
k=1

(p̂[k])j ;

7: if (overcharging exception (9) for j is raised) then
8: Update the charging rate by

(p̂[t])j ← cj −
T−1∑
l=t+1

(r[l])j −
t−1∑
k=1

(p̂[k])j ;

9: Sends the charging rate (p̂[t])j to utility;
10: Utility gathers the charging rates p̂[t]
11: Updates the next valley level by

(a′[t+ 1])j ← (a′[t])j +
(a′[t])j − (p̂[t])j − (p̃[t])j

T − 1− t
;

12: Solves the OPF problem F (p̂[t] + p̃[t]);

We can see from Algorithm 3 that, at each time t, each EV
only needs to execute line 4 to 9, which only takes O(1), and
the message communicated between utility and EVs are the
valley-level a and the charging rate decision p̂[t], hence the
requirement on computation and communication capabilities
for the charging points are relatively low.

Remark 2. Algorithm 3 only uses the prediction of average
aggregate load to set the initial valley level, if the utility have
accurate real time prediction price-inelastic load p̃[t], then we
can use bisection algorithm like Algorithm 1 to get even better
estimate of valley level a.

The following result demonstrates that the charging sched-
ule produced by Algorithm 3 is always feasible.

Theorem 3. If the charging rate constraints (r̄[1], . . . , r̄[T −
1]) and (r[1], . . . , r[T − 1]) permit a feasible solution, then
(p̂[1], . . . , p̂[T − 1]) obtained from Algorithm 3 is a feasible
solution to (5).

While line 5 to line 7 ensure feasibility, we may not want
to trigger those exceptions, because once any of them holds
true, subsequent charging rate will either stay at the maximum
or the minimum (leaving no room for optimization). Line 11
helps to avoid the exceptions by updating the valley level
estimation a′[t] based on information up to time t. If the sum
of the EV load and the price-inelastic load cannot meet the
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Fig. 2: Illustration of dynamic estimation of valley level [19].

current valley level estimation a′[t], then the next estimation
a′[t + 1] will be adjusted in the opposite direction to ensure
that the “total area” under the curve stays the same. This is
illustrated in Fig. 2.

As shown in Fig. 2, the valley level estimation (grey bar)
decreases when the total load exceeds the current estimation,
increases when the total load is below the estimation, and
stays the same when the total load meets the estimation. This
behavior is dictated by line 11, which spread out the current
mismatch evenly to the subsequent timeslots. The result below
shows that with this dynamic adjustment, the exceptions will
not be raised in most cases when the first estimation of the
valley level is sufficiently good.

Theorem 4. Assuming that the estimation of pI is accurate,
and a′[T − 1] − p̃[T − 1] ∈ [r[T − 1], r̄[T − 1]], then the
charging profile (p̂[1], . . . , p̂[T −1]) obtained from Algorithm
3 without line 6 to 7 is a feasible solution to (5).

With a high EV penetration level, the aggregate charging
rate window [r[T−1], r̄[T−1]] will be large and the condition
for Theorem 4 is more likely to hold, and the dynamic
adjustment of the valley level α′[t] alone is enough to produce
a feasible result. Hence, we expect that higher EV penetration
will lead to a better performance of Algorithm 3. This effect
is shown via simulation in section V-B.

The private information about the arrival and departure of
EVs is captured in r̄[t] and r[t], which is only used locally
at charging points for computations in line 6 and line 7.
This private information is not sent to the utility, hence the
algorithm is non-intrusive to the privacy of the EV owners.
By Theorem 4, when the EV load penetration is large, line 6
and 7 will not be invoked, which means that utility will not
be able to infer future charging schedule of EV owners.

As the online adjustment of the valley level (line 11) of
Algorithm 3 is trying to make p̂[1] + p̃[1] + . . .+ p̂[T − 1] +
p̃[T −1] = (T −1)a′[1], the accuracy in estimating a′[1] has a
direct impact on the performance of Algorithm 3. The impact
of the accuracy of prediction on the performance of Algorithm
3 is shown in section V-D.

V. NUMERICAL RESULTS

A. Simulation Setup

Consider the IEEE 14-bus system shown in Fig. 3 where
the circuit specifications and the physical limits are given in

the library of the toolbox MATPOWER [27]. The system has
five generators connected to buses 1, 2, 3, 6, and 8. Assume
that each of the nongenerator bus 4, 5, 7, 9, 10, 11, 12, 13,
and 14 is connected to an EV load. Enumerate the batteries of
these vehicles as 1, 2, . . . , 9. Consider that all the batteries are
plugged in at time t = 1 and must be fully charged by time
t = 25, the charging rate of each battery can be controlled
only at the discrete time instants 1, 2, . . . , 24.

Fig. 3: IEEE 14-bus system studied in Section V taken from
the IEEE power system test archive [28].

Aside from the elastic EV loads, suppose that each bus k ∈
{1, 2, . . . , 14} is also connected to a price-inelastic load given
by

(p̃[t])k =
l(t)× Pk

l(t)
, t = 1, 2, . . . , 24, (10)

where (P1, . . . , P14) is equal to the load specificatioin for the
IEEE 14-bus system [28], l(t) follows the average residential
load in the service area of South California Edison (SCE),
a Californian utility, at different times of the day, (cf. SCE
website [29]), and l(t) =

∑24
t=1 l(t). The goal is to optimize

the controllable parameters of the power network such as the
active power supplied by a generator or the charging rate of
a battery, which can be modified only at the time instants
1, 2, . . . , 24. To this end, we aim to minimize the following
cost function
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24∑
t=1

∑
k∈G

fk((p[t])k) +

24∑
t=1

∑
k∈N

α(p̂[t])k. (11)

This cost function has the following features:
• The power generation cost fk for generation bus k is the

quadratic cost specified by IEEE 14 bus test case [28].
• The EV charging cost is independent of its location and

invariant over time, and we let α = 2 in the following.
To compare Algorithm 3 with the optimal solution of (11)

solved by the SDP relaxation approach in [9], we used CVX
[30], which is a computational package for solving SDP. Three
scenarios will be considered in the sequel, and a working
example will be shown in Section V-E.

B. Effect of EV penetration

In this example, we study the effect of EV penetration
by varying the proportion of the EV load to the price-
inelastic load, and compute the percentage difference. The
percentage difference is given by (p∗online−p∗offline)/p

∗
offline×100,

where p∗offline and p∗online are the optimal values obtained by
Algorithm 2 and Algorithm 3 respectively. Fig. 4 shows the
simulation results using three different 24-hour load profiles
taken randomly from the SCE residential load data [29].
From Fig. 4, we can make the following observations: firstly,
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Fig. 4: Profile 1: residential load from 10:00 on Jul. 6th to 9:00
on Jul. 7th; Profile 2: residential load from 15:00 on Aug. 27th
to 14:00 on Aug. 28th; Profile 3: residential load from 1:00
on Mar. 11th to 0:00 on Mar. 12th, 2011 [29].

Algorithm 3 solves the joint OPF-EV charging problem (3)
almost optimally. From the three randomly chosen load profile,
the worst performance is less than 0.06% different from p∗offline.
Secondly, we can see all three plots go up initially and then
eventually decrease. This is because at the beginning, the EV
load is relatively insignificant, Algorithm 2 and 3 perform
almost the same as there is little to optimize. As the EV
load becomes more significant, the performance gap grows
because Algorithm 3 lacks perfect knowledge. However, a
higher EV penetration will also lead to a larger room for
optimization, as stated in Theorem 4. Hence, the performance
gap decreases and eventually approaches zero as the EV
penetration increases.

C. Effect of Controllable Charging Window Size
In this example, we set the charging rate constraint r

¯
[t] =

0,∀t, hence, the charging window size corresponds to the up-
per charging rate limit. Note that larger controllable charging
window size corresponds to using smart charging outlet with
higher charging rate limit. We plot the graph for the cases
when r̄[t] equal to 5%, 10%, and 20% of the actual EV load
respectively. Here, only the residential load profile from 15:00
on Aug. 27th to 14:00 on Aug. 28th is used.
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Fig. 5: Effect of varying the charging window size on the
performance of Algorithm 3.

From Fig. 5, we can see that a larger allowable charging
rate window leads to better results, as the curves correspond-
ing to 10% and 20% charging rate window are below that
of 5% charging rate window. However, once the charging
rate window is larger than 10%, any additional increase in
charging rate window size does not significantly improve the
performance.

D. Effect of Average Load Prediction Accuracy
In this example, we demonstrate the robustness of Algo-

rithm 3 against prediction error in the prediction of initial
valley-level. In Fig. 6, we let the initial estimation of the
total average load to be a′[1] = (p̃E + p̃I) × (1 + 5i%), i =
1, . . . , 10, which corresponds to 5%, 10%, . . . , 50% error in
estimation of the total average electricity load. We set the
charging rate window to be 20% of the total EV load. Here,
only the residential load profile from 15:00 on Aug. 27th to
14:00 on Aug. 28th is used.

We can see from Fig. 6 that, even when there is 50%
of prediction error in average total electricity demand, the
percentage difference to the offline optimal is still less than
1.2%. This shows that Algorithm 3 is robust against prediction
error in initial valley level as the suboptimality increase slowly
with respect to prediction error for a significant range. Further
stress test shows that, only in extreme cases, i.e., when the EV
penetration level is greater 80% and initial estimation error is
greater than 90%, Algorithm 3 will schedule excessive EV
load to be charged at the initial first few time slots that leads
to the OPF in (4), i.e., finding W[t], becoming infeasible.

E. A Working Example
In this example, we use real world residential load variation

given in Fig. 7 together with (10) to simulate behavior of
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Fig. 8: Optimal EV charging rates for the offline case, p∗offline = 1028 p.u.
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Fig. 9: Optimal EV charging rates for the online case, p∗online = 1031 p.u.

price-inelastic load. The EV penetration level is set to 50%,
and the charging rate window is 20% of the EV load, and we
assume that there is 10% error in overestimating the initial
valley level in the online case. The EV charging profiles
produced by Algorithm 2 and Algorithm 3 under this setting
are shown in Fig. 8 and Fig. 9 respectively. We can make
several observations from Fig. 8 and Fig. 9:

1) The charging rate of each EV is high when the inelastic
demand (shown in Fig. 7) is low, which corresponds to
the valley-filling characterization.

2) An over-estimation of the initial valley level causes
Algorithm 3 to charge the EV batteries faster than
optimum. As a result, all the EV batteries are fully
charged two time slots before the deadline.

3) The result of Algorithm 3 is still very close to the
optimal value, as the percentage difference is small:
(p∗online − p∗offline)/p

∗
offline × 100% = 0.24%. Hence, in

terms of minimizing the quadratic power generation

cost, Algorithm 3 performs nearly optimally at this
setting.

F. Runtime comparisons

In this section, we compare the computational time for the
SDP optimization approach that uses interior point algorithm
to solve the Joint OPF-EV charging problem in [9] with
that of Algorithms 2 and 3. The simulation is run on the
IEEE 14 bus system, for different scheduling period T .2 The
computational time measured is the average of running the
respective algorithm for ten times.

From Fig. 10, we can see that the time complexity of
Algorithm 2 and Algorithm 3 are comparable. Also, both
Algorithm 2 and Algorithm 3 have lower time complexity
as compared to the SDP optimization method in [9], and the

2We used MATLAB version 8.1.0.604 (R2013a), and ran the programs on
an Intel Core i7 CPU 2.90GHz machine.
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website [29]).
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Fig. 10: Runtime comparison between different algorithms

saving in computational time from using Algorithm 2 or Algo-
rithm 3 is more significant as T increases. This demonstrates
the advantage of using the valley-filling characterization to
decompose the joint OPF-EV charging problem.

VI. CONCLUSION

We studied a time-dependent OPF charging problem that
optimized jointly the operation of the power grid and the
charging activity of Electric Vehicles. We proved that this
problem is convex with respect to the total electricity demand,
characterized the valley-filling charging profile to be optimal
under constant electricity price, and proposed a decentralized
online algorithm that followed this characterization. At each
iteration of the online algorithm, each EV calculated its own
charging rate according to the valley level broadcast by the
utility, and the utility guided their charging rate by updating
the valley level. The online algorithm can be decentralized and
thus requires low communication and computation capability.
Simulation results showed that the online algorithm performed

almost optimally in minimizing power loss, and the optimal
value of the online algorithm approached to that of the offline
solution as the penetration of EVs increased. However, a
higher EV penetration will also lead to a higher sensitivity
on the accuracy of estimating the average price-inelastic load.

In this paper, the online algorithm considers a time invariant
pricing scheme. However, when there are renewable sources,
electricity prices can vary in real time. In addition, EVs arrivals
and departures may be stochastic. Incorporating real time pric-
ing, modeling EV arrivals as random events and accounting for
the uncertainties are interesting directions for future research.
Furthermore, our results can be generalized to more complex
joint OPF-EV charging problems, e.g., ramp rate constraints
on the power generators. Extending the algorithm to consider
reactive power (e.g., using rectifiers) may also be an interesting
area for future research.

VII. APPENDIX

A. Analysis of Valley-filling Characterization

In this section, we prove Theorem 1, Lemma 1 and Theorem
2 respectively.

Proof of Theorem 1: Let p̂[t]+p̃[t] be the argument to F (·)
in (4). From [5], with strong duality, F (p̂[t] + p̃[t]) is equal
to the optimal value of the following problem:

maximize h(Θ, p̂[t] + p̃[t]) (12a)
subject to A(Θ) � 0, (12b)

where Θ is the set of dual variables corresponding to the
different physical constraints in (3) without the rank constraint
(3h). h(Θ, p̂[t] + p̃[t]) is the Lagrange dual function (in fact,
an affine function in p̂[t] + p̃[t]) for every feasible Θ, and
A(Θ) is a linear matrix inequality constraint in Θ (cf. the
definition of Optimization 4 in [5]). Let D denote the feasible
set of Θ that satisfies the constraint (12b). Then,

F (p̂[t] + p̃[t]) = supΘ∈D(h(Θ, p̂[t] + p̃[t])), (13)

which is a convex function in (p̂[t] + p̃[t]) as it is a pointwise
supremum of convex functions [31]. �

Proof of Lemma 1:
∑T−1

t=1 αTp̂[t] = αTc, which is a
constant. Also, by Jensen’s inequality, we have

F (p̂[1] + p̃[1]) . . .+ F (p̂[T − 1] + p̃[T − 1])

T − 1

≥F
(

p̂[1] + p̃[1] + . . .+ p̂[T − 1] + p̃[T − 1]

T − 1

)
(14)

= F

(
c + d

T − 1

)
,

where the equality holds when p̂[1]+ p̃[1] = . . . = p̂[T −1]+
p̃[T − 1] = (c + d)/(T − 1). �

To prove Theorem 2, we start with the following:

Definition 2. Denote a > (b, c) > d to mean both a >
max(b, c) and d < min(b, c).

Lemma 2. Let f to be a convex function, and a+ d = b+ c
and a > (b, c) > d, then f(a) + f(d) ≥ f(b) + f(c).

Proof: Without loss of generality, assume that a > b >
c > d, as a + d = b + c, then there exists a k ∈ (0, 1) such
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that ka+ (1− k)c = b, and kd+ (1− k)b = c. By convexity
of f , we have

kf(a) + (1− k)f(c) ≥ f(b), (15a)
kf(d) + (1− k)f(b) ≥ f(c). (15b)

Summing (15a) and (15b) completes the proof.

Proof of Theorem 2: Consider all the arguments to F (·)
to be scalars first, we can get the proof for the vector case
by repeating the argument for each component of the vector.
Suppose (p̂′[1], . . . , p̂′[T − 1]) is an optimal solution to the
scalar case of (5), and let (p̂[1], . . . , p̂[T − 1]) be the valley-
filling load.

Suppose we have some p̂′[j] 6= p̂[j], without loss of
generality, assume p̂′[j] > p̂[j], by (5c), there must exist some
k, such that p̂′[k] < p̂[k]. From Definition 1, a valley-filling
profile has the minimal deviation from the flat profile, i.e.,
for (5), if (p̂[1], . . . , p̂[T − 1]) is a valley-filling profile, and
(p̂′[1], . . . , p̂′[T − 1]) is any feasible charging profile, then
|a− ((p̂[i]) + (p̃[i]))| ≤ |a− ((p̂′[i]) + (p̃′[i]))|, ∀i. Hence,

p̂[j] < p̂′[j]⇒ p̂[j] + p̃[j] < p̂′[j] + p̃[j]

⇒ p̂′[j] + p̃[j] > a, (16)
p̂[k] < p̂′[k]⇒ p̂[k] + p̃[k] > p̂′[k] + p̃[k]

⇒ p̂′[k] + p̃[k] < a. (17)

We consider two cases, p̂′[j]−p̂[j] ≤ p̂[k]−p̂′[k] and p̂′[j]−
p̂[j] > p̂[k]− p̂′[k] separately.

Case 1, suppose that p̂′[j] − p̂[j] ≤ p̂[k] − p̂′[k], meaning
that p̂′[j] deviates from the valley-filling load by a smaller
amount. In this case, we swap p̂′[j] and p̂′[k] by p̂′′[j] and
p̂′′[k] defined as follows:

p̂′′[j] = p̂[j], p̂′′[k] = p̂′[k] + p̂′[j]− p̂[j].

Now, p̂′′[k] is feasible because p̂′[k] ≤ p̂′′[k] ≤ p̂[k] by
assumption. Furthermore, p̂′′[j] + p̂′′[k] = p̂′[j] + p̂′[k]. From
(16) and (17), we have

p̂′[k] + p̃[k] ≤ (p̂′′[k] + p̃[k], p̂′′[j] + p̃[j]) ≤ p̂′[j] + p̃[j].

Hence, by Lemma 2, we have

F (p̂[j]′′ + p̃[j]) + F (p̂[k]′′ + p̃[k])

≤ F (p̂′[j] + p̃[j]) + F (p̂′[k] + p̃[k]),

which means that applying such swapping procedure will not
increase the objective value of (5).

Case 2, suppose that p̂′[j]− p̂[j] > p̂[k]− p̂′[k]. Then in this
case apply the swapping procedure as follows:

p̂′′[j] = p̂′[j] + p̂′[k]− p̂[k], p̂′′[k] = p̂′[k].

By a symmetric argument to case 1, applying such a
swapping procedure will not decrease the objective value of
(5) as well.

Note that each time a swapping is applied, there will be
at least one fewer p̂′[j] that deviates from the valley-filling
load. Applying a finite number of this swapping procedure
completes the proof. �

B. Analysis of Algorithm 3

In this section, we prove Theorem 3 and Theorem 4.

Proof of Theorem 3: Firstly, the charging profile
(p̂[1], . . . , p̂[T − 1]) will not overcharge EV batteries, i.e.,∑t

k=1 p̂[k] ≤ c ∀t, by line 7 to 8. Secondly, it will
not undercharge, i.e.,

∑T−1
t=1 p̂[t] ≥ c because of line 5

to 6. Hence,
∑T−1

t=1 p̂[t] = c, the charging sum constraint
is satisfied. Thirdly, assuming the charging rate constraints
permit a feasible solution, then r[t] ≤ p̂[t] ≤ r̄[t],∀t. This
can be proved by contradiction, suppose the charging profile
(p̂[1], . . . , p̂[T − 1]) obtained from the above algorithm has
some i, j, such that (p̂[t])j < (r[t])j , note that (p̂[t])j can
only go below (r[t])j if the condition in line 7 is true. Pick
the smallest t where the charging rate constraint is violated.
If t = 1, then that means

∑T−1
t=1 (r[t])j > cj by line 7,

i.e., the charging limit does not permit a feasible solution,
which is a contradiction. If t > 1, then by line 8, we have
(p̂[t])j = cj −

∑T−1
l=t+1(r[l])j −

∑t−1
k=1(p̂[k])j < (r[t])j , and

after rearranging, we have
∑t−1

k=1(p̂[k])j > cj−
∑T−1

l=t (r[l])j ,
but that is not possible, because at the end of iteration t− 1,
line 7 to line 8 will always make sure that

∑t−1
k=1(p̂[k])j ≤

cj −
∑T−1

l=t (r[l])j . The other case where the upper charging
rate constraint is violated can be proved in a similar way.
Therefore, when both the charging sum and the charging
rate constraints are satisfied, the charging profile produced by
Algorithm 3 is a feasible solution to (5). �

Proof of Theorem 4: Firstly, a′[T − 1]− p̃[T − 1] ∈ [r[T −
1], r̄[T − 1]] ⇒ p̂[T − 1] + p̃[T − 1] = a′[T − 1]. To prove
that (p̂[1], . . . , p̂[T − 1]) is a feasible solution to (5), we only
need to show that

∑T−1
t=1 (p̂[t] + p̃[t]) = (T − 1)(pE + pI) =

(T − 1)a′[1]. Note that p̂[T − 1] + p̃[T − 1] = a′[T − 1]. If
T = 2 then we are done, otherwise repeatedly applying line
11 of Algorithm 3, we will have

p̂[1] + p̃[1] + . . .+ p̂[T − 1] + p̃[T − 1] = (T − 1)a′[1].

Hence
∑T−1

t=1 (p̂[t] + p̃[t]) = (T − 1)a′[1], which is what we
set out to prove. �
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