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Thinking Fast and Slow: Optimization Decomposition Across Timescales

Gautam Goel Niangjun Chen Adam Wierman

Abstract— Many real-world control systems, such as the
smart grid and human sensorimotor control systems, have
decentralized components that react quickly using local infor-
mation and centralized components that react slowly using a
more global view. This paper seeks to provide a theoretical
framework for how to design controllers that are decomposed
across timescales in this way. The framework is analogous to
how the network utility maximization framework uses opti-
mization decomposition to distribute a global control problem
across independent controllers, each of which solves a local
problem; except our goal is to decompose a global problem
temporally, extracting a timescale separation. Our results
highlight that decomposition of a multi-timescale controller
into a fast timescale, reactive controller and a slow timescale,
predictive controller can be near-optimal in a strong sense. In
particular, we exhibit such a design, named Multi-timescale
Reflexive Predictive Control (MRPC), which maintains a per-
timestep cost within a constant factor of the offline optimal in
an adversarial setting.

I. INTRODUCTION

Modern control systems nearly always operate at multiple

timescales. In the power grid, slow timescale economic

dispatch is used to determine which baseload generators will

supply power, while fast timescale frequency regulation is

used to correct any imbalance between demand and supply

that may arise [8]. In networking, software defined networks

use a slow timescale “control plane” controller to decide

where to send data packets, whereas fast timescale “data

plane” controllers are responsible for routing the actual

data [22]. Even human sensorimotor control exhibits the

same phenomenon, with slow timescale behaviors such as

trajectory planning and fast timescale behaviors such as

involuntary reflexes [19], [31], [42], [46]. In fact, such

timescale separation has consequently been proposed for the

control of robotic systems [16], [46].

Thus, the design and analysis of multi-timescale control

systems has received considerable attention. However, the

design of control policies for multi-timescale control systems

typically does not address the joint problem of designing

control policies across timescales. Instead, controllers for

each timescale are designed independently. For example, in

the power grid, the slow timescale problem of economic

dispatch is usually studied separately from the fast timescale

problem of frequency regulation. Similarly, in software de-

fined networking, the design of the control plane and data

plane controllers are usually considered separately.
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Across these and other applications timescale separation is

assumed rather than derived, and the resulting subproblems

are then studied independently, without guarantees about

how they operate jointly. As a result, there are significant

inefficiencies that are inherent to the resulting designs, even

if each timescale problem is solved optimally. For exam-

ple, recent work jointly designing economic dispatch and

frequency regulation in the the power grid highlights signif-

icant inefficiency in designs that treated the two timescales

independently [8].

In this paper, our goal is to develop a framework for de-

riving rather than assuming a timescale separation in global

optimization problems. In particular, we adapt the idea of

optimization decomposition from the domain of distributed

control into the domain of multi-timescale control.

There is a vast literature on optimization decomposition,

in fields as diverse as Internet congestion control [28], [44],

smart grid control [8], [14], robotics [7], [16] and beyond

[11]. The idea of this approach is to decompose a global

optimization problem into smaller localized subproblems,

each of which is solved by independent controllers. See [11]

for a survey. In a similar way, our goal in this paper is to

look for decompositions of a global optimization problem in

time, as opposed to in space.

However, this goal is made challenging by the tight

coupling between the timescales due to the underlying dy-

namics of the system under consideration. Typically, spatial

optimization decomposition is performed for static optimiza-

tions, but in multi-timescale control the dynamics of the

system cannot be ignored. Any slow timescale action will

impact the future state via the dynamics and hence must

be taken into account when designing the fast controller;

conversely, any fast timescale action impacts the state seen

by a slow controller and thus impacts its design as well.

This makes it unclear whether it is possible to achieve a

clean separation between controllers at different timescales.

A. Contributions of this paper

We make three main contributions in this paper.

Firstly, we introduce a simple but general model for

studying multi-timescale optimal control. We consider a

system subject to linear dynamics which is perturbed by

noise; we make absolutely no assumptions about the nature

of the noise, i.e., it may be random or even adversarial.

This system can be controlled by two controllers, one of

which is a traditional, “fast timescale” controller that can

react immediately to the noise, and another which is a novel,

“slow timescale” controller that is only able to react slowly,
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but which is empowered with access to more information

than the fast controller and is potentially cheaper to use.

Secondly, we prove that one cannot expect to be able to

design near-optimal controllers for multi-timescale control

problems without the use of predictions. Our proof technique

is based on a blackbox reduction to online convex optimiza-

tion, a problem that has been intensively studied within the

online algorithms community over the past decade. We use

this reduction to describe a novel algorithm for the classic,

fast timescale problem, a result which is of interest in its

own right.

Thirdly, we introduce a new multi-timescale control policy,

MRPC, and derive strong guarantees on its performance. In

particular, we prove that the per-step cost incurred by our

algorithm is at most a constant more than that incurred by

the offline optimal. The design of our policy is motivated by

a structural result about the offline optimal control action,

which highlights a strong decomposition between fast and

slow timescale controllers. Applying this idea to the design

of the online algorithm, we are able to achieve a clean

separation between timescales. Remarkably, our decompo-

sition results in a purely reflexive, “dumb” fast controller,

which performs no optimization or lookahead. Thus, all of

the computational burden is shifted onto the slow, “smart”

controller. This property of MRPC is desirable in many

applications since the slow controller is often centralized

and able to take a global view of the system, but the fast

controllers are decentralized and myopic, e.g., the power sys-

tems, networking, and robotics examples mentioned above.

B. Related literature

This paper broadly falls into the category of optimal

control [4], [47]. Typical methods for solving optimal con-

trol problem involve Pontryagin’s principle [39], [40] and

Hamilton-Jacobi-Bellman equation [4], [5]. With the rare

exception of Linear Quadratic (LQ) systems, optimal control

problems are generally nonlinear and do not admit analytical

solutions. It is therefore necessary to solve optimal control

problem via numerical methods. However, most existing

numerical methods for optimal control (see [38] for a survey)

do not scale well, and decomposing large scale problems

into smaller subproblems is often required. There is large of

literature on decomposition in the field of convex optimiza-

tion and distributed computing. Common approaches include

primal-dual decomposition [27], [33], alternating direction

method of multipliers [6], [13] etc. These approaches have

been crucial in developing distributed algorithms in various

applications, e.g., communication networks [11], [28], [44],

power systems [15], [34], robotics [37], [45]. However,

these approaches are focused on spatial decomposition, and

our focus in this paper is on temporal decomposition into

independent controllers at different timescales.

The most related prior work is [30], which proposes an

architectural decomposition of the optimal control problem

into two layers: a top level trajectory planning problem

that generates reference signals and a low level tracking

problem that simply follows the reference points. How-

ever [30] does not provide optimality guarantees for the

decomposition. Another related recent paper is [8], which

focuses on temporal decomposition in the context of power

systems. The work provides an optimality condition for time-

scale decomposition of optimal control in power systems.

But, note that [8] considers a problem without dynamics.

In this paper, we propose timescale decomposition for a

general optimal control problem with linear dynamics and

we provide provable performance guarantees.

II. MODEL

Our goal in this paper is to study the design of controllers

for systems that operate at multiple timescales. To this end,

we focus on a simple but general optimal control problem.

The multi-timescale problem we consider builds on the

following optimal control problem, which operates at a single

timescale:

min
x,f

T
∑

t=1

cx(xt) + cf (ft) (1)

s.t. xt = Axt−1 +Bfft + wt

x0 = 0

Here xt ∈ R
n is the state variable, ft ∈ R

n is the control

action and wt ∈ R
n is the disturbance. In our technical

results, we assume that the control matrix Bf is invertible;

considering the non-invertible case is an interesting direction

for future work. The cost functions cx(·), cf (·) are usually

assumed to be non-negative and convex. The special case

when each noise increment wt is an i.i.d. Gaussian random

variable and cx(·), cf (·) are positive definite quadratic forms

represents the Linear Quadratic Regulator (LQR) framework

[12], [23], [43].

To extend (1) to a multi-timescale control problems, we

introduce a “slow” controller. The slow controller reacts

much less quickly to noise than the fast controller; however

there are two potential benefits afforded by the existence of

the slow controller.

First, in many situations the slow controller is centralized,

and hence can use global information to make make better

decisions than the decentralized, localized fast controllers. In

our context, we model this by allowing the slow controller

access to predictions of future noise increments. An example

where the slow controller has this benefit is software defined

networking, where the centralized controller has access to

much more information than the local distributed controllers

that provide congestion control via simple reactive policies

[22]. Similarly, this type of interaction between a “smart”

slow controller and a “reflexive” fast controller is common

in robotics [16].

Second, in many cases the slow controller is much cheaper

to operate than the fast controller. Thus, making use of the

slow controller is crucial for minimizing cost. For example,

in the smart grid cheap “baseload” generators are used to

supply the bulk of demand, whereas fast and relatively

expensive “peaker” generators are used to quickly correct

any imbalances between supply and demand that may arise



[29], [35], [41], [8]. A similar distinction happens between

economic dispatch and frequency regulation. In fact, a mo-

tivation for this paper comes from recent work in [8] that

highlights a timescale separation between these controllers.

Adding a slow controller to the optimal control problem

in (1) gives:

min
x,f,s

T
∑

t=1

cx(xt) + cf (ft) + cs(st) (2)

s.t. xt = Axt−1 +Bfft +Bsst + wt

x0 = 0

st = st−1 ∀t 6∈ 0, k, 2k, . . .

Here st denotes the control action of a slow controller. The

constraint on st means that the slow controller cannot react

quickly, i.e., it can only change its action every k timesteps.

This formulation leads to a intrinsic notion of timescales:

there is a fast timescale consisting of the timesteps {1, 2, . . .}
in which the fast controller reacts, and a slow timescale

consisting of the timesteps {1, k + 1, 2k + 1, . . .} at which

the slow controller reacts. Clearly one could continue to add

other timescales to this formulation as well, but we focus on

the two timescale case for clarity.

The focus of this paper is the design of a set of fast

timescale and slow timescale controllers that operate inde-

pendently but, together, approximate the optimal value of (2)

without fully knowing the wt’s in advance. Motivated by the

applications mentioned above, our goal is to develop designs

where the slow controller is sophisticated and predictive, but

the fast controller is simple and reactive.

One of the key differences of our approach compared to

classical control theory lies in how we measure performance.

Typical results in the control theory literature focus on set-

tings with distributional assumptions about the noise vector

w (for example, i.i.d. Gaussian), and seek to minimize the

expected cost with respect to this distribution. In contrast, we

use the approach of the online algorithms community and

analyze the worst-case performance without distributional

assumptions via the competitive ratio [17], [21].

Formally, the competitive ratio is defined as follows. Let

OPT denote the optimal value of (2) and ALG the cost

incurred by a specific algorithm. Then, the competitive ratio

is defined as

CR(ALG) = sup
w

ALG

OPT
.

This quantity measures the worst-case performance of an

algorithm relative to the offline optimal and, in particular,

makes no distributional assumptions on w. An algorithm is

said to be constant competitive if its competitive ratio is

bounded by a finite constant, independent of T .

We show in Section III that it is impossible to design

constant competitive algorithms for (2) without using pre-

dictions of the future wt. For this reason, our results focus

on settings where algorithms have access to a limited number

of noisy predictions of future wt. In particular, we assume

that, at the start of each slow timescale interval, we have

estimates ŵt of the true noise increments over that slow

timescale interval. Importantly, we do not make distributional

assumptions about the predictions or prediction errors.

Finally, one note on notation: throughout this paper, we

follow the standard convention that vector valued variables

are lowercase and matrix valued values are uppercase. When

we write ‖A‖a, we mean the matrix norm of A induced by

the vector norm ‖ · ‖a. Also, we follow the convention of

the algorithms community and often abuse notation to let an

algorithm’s name denote the cost it incurs.

III. HARDNESS OF MULTI-TIMESCALE CONTROL

Before turning to the design and analysis of an online

algorithm for multi-timescale control, it is natural to ask

what performance we should expect to be able to attain. In

particular, should we expect to be able to find a constant

competitive algorithm?

We show in this section that the answer is “no” in general,

but that it becomes “yes” when the algorithm has access to

a limited number of noisy predictions. This observation is

crucial to the design and analysis of the algorithm we present

in Section IV.

Interestingly, we cannot even expect to be able to de-

sign a constant competitive algorithm for the fast control

subproblem of (2) given by (1). To show this, we prove

below that (1) can be reformulated as an online convex

optimization problem, which is a classical online algorithms

problem that has received considerable attention in the last

decade [1], [9], [10], [25], [26]. Importantly, competitive

algorithms for online convex optimization algorithms do not

exist in general, unless the algorithms are given access to

noisy predictions about the future.

Formally, the equivalence to online convex optimization is

stated as follows.

Proposition 1. Suppose both cs(·) and cf (·) are a norm,

‖ · ‖, and suppose Bf = Bs. Then (1) is equivalent to (2)

and, further, (1) can be reformulated as

min
y

T
∑

t=1

ct(yt) + ‖(Bf )−1(yt −Ayt−1)‖, (3)

where y0 = 0 and ct(yt) = cx(yt + vt) for some vt.

Proof. First, we need to argue that the multi-timescale prob-

lem (2) is equivalent to the fast timescale problem in (1)

under the assumptions of the proposition. Suppose f∗ is an

optimal control action for (1). Then the pair (f∗, 0) is an

optimal pair of fast and slow control actions for (2), since it

is feasible and achieves the same cost. Conversely, suppose

(f∗, s∗) is an optimal pair of control actions for (2). Then

the action f∗ + s∗ is an optimal action for (1), by the same

reasoning.

The second part of the proposition is to prove the reformu-

lation of (1) as (3). To do this, we can iterate the dynamics

and apply a change of variables. Specifically, iterating the



dynamics in (1) backwards in time, we see that

xt =

t
∑

i=1

At−iBffi +

t
∑

i=1

At−iwi.

Next, introduce the change of variables

yt =

t
∑

i=1

At−iBffi, vt =

t
∑

i=1

At−iwi.

This yields (3). Notice that, given the solution to (3), we

can construct the corresponding solution to (1) by setting

ft = (Bf )−1(yt −Ayt−1).

Problem (3) is a specific kind of online convex opti-

mization problem known as a “Smoothed” Online Convex

Optimization (SOCO). Specifically, convex cost functions

ct(yt) = cx(yt + vt) arrive online and the goal of the

online algorithm is to minimize the cost paid by choosing the

sequence of actions {yt}. The term ‖(Bf )−1(yt−Ayt−1)‖f
acts as a regularizer, penalizing choices that differ from the

previous choice yt−1 under the dynamics of A. Proposition

1 provides a reduction from SOCO to (2): if we had a

competitive online algorithm for (2), we would have one for

SOCO as well.

SOCO problems have been intensely studied in the past

decade due to their widespread applications in fields as

diverse as motion tracking [24], power management for large

data centers [26], geographical load-balancing for Internet

scale applications [25] [36], and video streaming [32], [20].

In general, while there exist constant competitive algorithms

for one dimensional [3], [25] and two dimensional [1]

SOCO problems, it is unknown whether there exist constant

competitive algorithms for higher dimensions. Further, it has

been shown that SOCO problems are equivalent to Convex

Body Chasing [18] in the sense that a competitive algorithm

for one implies the existence of a competitive algorithm

for the other [1]. This highlights the difficulty of obtaining

constant competitive algorithms since Convex Body Chasing

has been open for several decades.

Due to the difficulty of SOCO-style problems, much

of the work on these problems has focused on settings

where the online algorithms have access to (possibly noisy)

predictions about future cost functions. For example, given

perfect lookahead in a prediction window of length w, there

exist algorithms whose competitive ratio is 1 + O(1/w),
independent of dimension [25]. Similar positive results are

possible in cases with noisy predictions, e.g., [9], [10].

Given Proposition 1, the positive results described above

can yield effective algorithms for the single timescale, opti-

mal control with linear dynamics in (1). To highlight this, we

focus on a particularly promising algorithm from the SOCO

literature called Averaging Fixed Horizon Control (AFHC).

AFHC was introduced in [25] and has since been studied

in [2], [9], [10]. AFHC is parameterized by the size of

the prediction window it uses, which we denote by w. It

works by averaging together the control actions of w + 1
independent Fixed Horizon Control (FHC) algorithms. The

k-th FHC algorithm (k = 1 . . . w+1) starts at timestep k by

greedily choosing the set of control actions that minimize the

cost over time [k, k+w], and then repeatedly chooses control

actions to minimize cost over each consecutive length w+1
window. The control action output by AFHC is the average

of the control actions of all w + 1 FHC algorithms.

In general, [25] proves that AFHC is 1 + O(1/w) com-

petitive for SOCO problems with costs bounded below by

a positive constant c0. In the setting of this paper, we can

prove a more precise result that highlights the impact of the

structure of the dynamics.

Theorem 1. Suppose each ct is m-strongly convex and

bounded below by a positive constant c0. Then the com-

petitive ratio of AFHC for (3) is at most

1 +
‖(Bf )−1A‖2

2m(w + 1)c0

and in particular is 1 +O(1/w).

This result highlights the ability of AFHC to perform well

in a classic control problem, even in the adversarial setting.

Further, the bound in the theorem highlights the impact of

the structure of the dynamics on the performance of the

algorithm. In general, as w tends to infinity the competitive

ratio of AFHC will tend to one. This is unsurprising, since

the algorithm will have access to more and more information

about the future and hence will be able to make better

decisions. However, Theorem 1 shows that even when w is

small, AFHC can attain near optimal performance provided

‖(Bf )−1A‖ is sufficiently small. The matrix A can be

interpreted as the gain of the system dynamics, and the

matrix Bf as the gain of the fast controller; hence the

expression ‖(Bf )−1A‖ is intuitively a measure of the fast

controllers ability to counteract the gain of the system.

Proof. Let Ωk = {k, k + w, k + 2w, . . .} be the set of

times when the k-th FHC algorithm recomputes its control

trajectory. Let y∗ denote the optimal trajectory for (3) and

yk denote the choice of the k-th FHC algorithm. We define

a function which measures the total cost incurred by a

trajectory over [s, s+ w], starting from the point yks−1:

gs,s+w(y) =
s+w
∑

t=s

ct(yt) +
s+w
∑

t=s+1

‖(Bf )−1(yt −Ayt−1)‖

+ ‖(Bf )−1(ys −Ayks−1)‖

Notice that gs,s+w is itself m-strongly convex; it is the sum

of the m-strongly convex cost functions and the convex

switching costs. Hence for all s we have

gs,s+w(y
k)− gs,s+w(y

∗) ≤∇gs,s+w(y
k)T (yk − y∗)

−
m

2

s+w
∑

t=s

‖ykt − y∗t ‖
2

Notice that for all s ∈ Ωk, the gradient term vanishes, since

by definition the k-th FHC algorithm chooses a trajectory



which minimizes gs,s+w at each s ∈ Ωk. Letting dt = ‖ykt −
y∗t ‖ and summing up over all s ∈ Ωk gives:

∑

s∈Ωk

gs,s+w(y
k)−

∑

s∈Ωk

gs,s+w(y
∗) ≤ −

m

2

∑

s∈Ωk

s+w
∑

t=s

d2t

The first sum on the left hand side is the total cost incurred by

the k-th FHC algorithm, which we denote by FHCk. Using

the definition of gs,s+w and the reverse triangle inequality,

we can bound the second term:
∑

s∈Ωk

gs,s+w(y
∗) ≤ OPT + ‖(Bf )−1A‖

∑

s∈Ωk

ds−1

from which we obtain

FHCk −OPT ≤
∑

s∈Ωk

‖(Bf )−1A‖ds−1 −
m

2
d2s−1

Here we used the fact that −m
2
d2t is always nonpositive,

so throwing away some of these terms can only increase

the righthand side. Maximizing the summands in ds−1, we

obtain

FHCk −OPT ≤
∑

s∈Ωk

‖(Bf )−1A‖2

2m

We average all w + 1 FHC algorithms and apply Jensen’s

Inequality to obtain

AFHC −OPT ≤
1

w + 1

T
∑

t=1

‖(Bf )−1A‖2

2m

Finally we divide by OPT and use the bound OPT ≥ c0T
to get a bound on the competitive ratio:

1 +
‖(Bf )−1A‖2

2m(w + 1)c0

which establishes the 1 +O(1/w) claim.

IV. ARCHITECTURAL DECOMPOSITION FOR

MULTI-TIMESCALE CONTROL

We now turn our attention to the joint multi-timescale

control problem in (2), and focus on the co-design of fast and

slow controllers. Recall that, while the slow controller cannot

act as frequently, there are two benefits it usually provides:

(i) it may have more information and computational power

than the fast controller, e.g., in software defined networking

and robotics, and (ii) it may be cheaper to operate than

the fast controller, e.g., when scheduling generation in the

smart grid. To capture these benefits of a slow controller, we

consider a setting where the slow controller has access to

noisy predictions but the fast controller does not. We also

specifically highlight the case where the slow controller is

cheaper to operate, though our results apply more generally.

Our main result in this section provides a performance

bound for a new, near-optimal algorithm – Multi-timescale

Reflexive Predictive Control (MRPC) – that consists of a

simple, reflexive fast timescale controller and a predictive

slow timescale controller. For concreteness and ease of

presentation we focus on the case where the cost functions

cx, cs, cf in (2) are norms ‖ · ‖x, ‖ · ‖s, ‖ · ‖f .

A. An overview of MRPC

Informally, MRPC works as follows. Over each slow

timescale slot, the slow controller greedily plays the slow

control action which minimizes the expected cost using the

predictions ŵt, under the assumption that the fast controller

will keep the state at zero. As the true noise increments

wt are revealed one by one, the fast controller myopically

corrects any noise so as to keep the state at zero.

Formally, let f̂ and ŝ denote the fast and slow control

actions of MRPC. Then, the operation of each is as follows:

ŝr = min
s

[

k‖sr‖s +
r+k−1
∑

t=r

‖(Bf )−1(Bssr + ŵt)‖f

]

(4)

f̂t = −(Bf )−1(Bsŝr + wt) t = r, . . . r + k − 1 (5)

Notice that the fast controller is very simple; it uses no

predictions and performs no optimization. All of the predic-

tion and optimization is shifted onto the slow controller. This

is consistent with how the two controllers are used in many

applications, where the slow controller is often centralized,

with access to global information, but the fast controllers are

usually decentralized, localized, and computationally limited.

For example, in the smart grid a slow timescale global

optimization problem is solved (economic dispatch) and then

localized fast timescale controllers myopically correct any

deviations that may arise (frequency regulation).

B. Performance of MRPC

Our main technical result is a performance bound for

MRPC. In particular, the following result shows that, despite

the difficulty of the multi-timescale control problem, MRPC

maintains a per-stage cost within a constant factor of the

offline optimal, even when adversarial inputs are considered.

Theorem 2. Assume the cost functions cx, cs, cf in (2) are

norms ‖ · ‖x, ‖ · ‖s, ‖ · ‖f . Then MRPC has an average per-

stage cost within a constant factor of optimal. Specifically,

MRPC

T
≤max

(

(1 + ‖A‖x) ‖(B
f )−1‖

c
, 1

)

OPT

T

+ 2‖(Bf)−1‖E(ŵ, w)

where c is a constant such that ‖v‖x ≥ c‖v‖f for all v and

E(ŵ, w) is the sample path average prediction error:

E(ŵ, w) =
1

T

T
∑

t=1

‖ŵt − wt‖f

Before moving to the proof, let us make a few remarks

about Theorem 2. To begin, recall that even the single

timescale problem could not be solved optimally by a fast

timescale controller, and so the performance bound in The-

orem 2 is surprisingly strong, especially given that the fast

time scale controller in MRPC does not use any predictions

– it is simply reflexive.

To get intuition for the bound itself, let us first look at the

second term. The second term in the bound corresponds to

the inefficiency due to noisy predictions. In particular, if we

assume perfect lookahead (i.e ŵt = wt for all t), then the



second term disappears. Thus, we see that prediction error

has only an additive effect. It is important to realize that the

analysis makes no modeling assumptions on the form of the

prediction error. The error can be adversarial or stochastic

and the result still holds.

The first term bounds the per-step cost incurred by our

algorithm relative to the per-step cost incurred by the offline

optimal. To get intuition for it, consider the case where

control costs dominate the state costs. Specifically, consider

the case where c ≥ 2‖(Bf)−1‖, and there are no errors

in predictions. In this case, we have MRPC = OPT . It

is worth highlighting this result in words: when state costs

dominate control costs and prediction errors are small, our

distributed algorithm achieves the optimal value of (2). This

is remarkable, since the offline optimal has a formidable

advantage compared to our online algorithm - it knows the

full noise vector w in advance, whereas during each slow

timescale interval our online algorithm only has access to

predictions about the noise in that interval.

Finally, it is important to note that Theorem 2 is incompa-

rable to Theorem 1 since Theorem 2 compares to the offline

optimal of the multi-timescale problem while Theorem 1

compares to the offline optimal of a single stage problem. In

settings where the slow timescale controller is much cheaper

than the fast timescale controller the cost difference between

these problems can be arbitrarily large.

We now move to the proof of Theorem 2. The proof is

technical, but also provide crucial intuition into the form of

MRPC. In particular, the proof includes a lower bound on the

offline optimal which motivates the decomposition between

the fast and slow timescales used in the design of MRPC. It

is this bound that highlights the ability to obtain timescale

separation via the optimization decomposition in MRPC.

C. Proof of Theorem 2

Recall, that we are considering the case where the convex

cost functions in (2) are norms. Further, it is convenient to

absorb the constraint on the slow controller directly into the

objective and rewrite (2) as

min
x,f,s

∑

r∈S

[

k‖sr‖s +
r+k−1
∑

t=r

‖xt‖x + ‖ft‖f

]

(6)

s.t. xt = Axt−1 +Bfft +Bsst + wt

x0 = 0

Here S = {1, k+1, 2k+1, . . .} is the set of slow timescale

steps, i.e., when the slow controller can change its control

action.

The first step in the analysis is to establish a lower bound

on the cost incurred by the offline optimal. As mentioned

above, this lower bound highlights the decomposition be-

tween fast and slow used in the design of MRPC.

To prove the lower bound we make use of the following

technical lemma.

Lemma 1. Let v ∈ R
n, and let M ∈ R

n×n be an invertible

matrix. Let ‖ · ‖a, ‖ · ‖b be any two norms on R
n, and let

c be a constant such that ‖v‖a ≥ c‖v‖b for all v. For all

α, β > 0 we have

min
x

α‖v +Mx‖a + β‖x‖b ≥ min

(

αc

‖M−1‖b
, β

)

‖M−1v‖b.

Proof. We have:

min
x

α‖v +Mx‖a + β‖x‖b

≥min
x

αc‖M(x+M−1v)‖b + β‖x‖b

≥min
x

αc

‖M−1‖b
‖x+M−1v‖b + β‖x‖b

≥min
x

αc

‖M−1‖b

∣

∣

∣
‖x‖b − ‖M−1v‖b

∣

∣

∣
+ β‖x‖b

The first inequality follows from the equivalence of norms

in finite dimensional linear spaces. The second inequality

is because ‖y‖ = ‖M−1My‖ ≤ ‖M−1‖‖My‖, hence

‖My‖ ≥ 1

‖M−1‖‖y‖ for all y. The last inequality is just

the reverse triangle inequality.

The last optimization is an optimization over the scalar

variable ‖x‖b and it is easy to see that it is lower bounded

by

min

(

αc

‖M−1‖
, β

)

‖M−1v‖b.

Now we are ready to prove the lower bound.

Lemma 2. Letting OPT denote the optimal solution for (6),

we have:

OPT ≥ min
s

∑

r∈S

[

k‖sr‖s + C

r+k−1
∑

t=r

‖(Bf )−1(Bsst + wt)‖f

]

where

C = min

(

c

(1 + ‖A‖x) ‖(Bf )−1‖
, 1

)

and c is a constant such that ‖v‖x ≥ c‖v‖f for all v.

Proof. Suppose x̂, f̂ , ŝ are some arbitrary feasible choices of

the decision variables in (6), which incur the associated cost

COST . We have

COST =
∑

r∈S

r+k−1
∑

t=r

‖x̂t‖x + ‖f̂t‖f + ‖ŝr‖s

=
∑

r∈S

r+k−1
∑

t=r

‖Ax̂t−1 +Bf f̂t +Bsŝr + wt‖x

+ ‖f̂t‖f + ‖ŝt‖s

≥
∑

r∈S

r+k−1
∑

t=r

[

‖Bf f̂t +Bsŝr + wt‖x − ‖A‖x‖x̂t−1‖x

+ ‖f̂t‖f + ‖ŝr‖s

]

≥− ‖A‖xCOST +
∑

r∈S

r+k−1
∑

t=r

‖Bf f̂t +Bsŝr + wt‖x

+ (1 + ‖A‖x)
(

‖f̂t‖f + ‖ŝr‖s

)



from which we obtain the lower bound on COST given by

∑

r∈S

[

k‖ŝr‖s +
r+k−1
∑

t=r

β‖Bf
f̂t +B

s
ŝr +wt‖x + ‖f̂t‖f

]

where β = 1

1+‖A‖x
. Since x̂, f̂ , ŝ were arbitrary feasible

values, and in particular, could be taken to be the optimal
values for (6), we obtain a lower bound on OPT given by

min
f,s

∑

r∈S

[

k‖ŝr‖s +

r+k−1
∑

t=r

β‖Bf
ft +B

s
sr + wt‖x + ‖ft‖f

]

.

Examining the structure of this expression, we observe

that once each sr is fixed, the resulting optimization in

f resembles that in Lemma 1, which leads directly to the

theorem.

The lower bound has the following interpretation. Suppose

the state is set at zero. After the slow controller has set its

action to be sr, the fast control action which corrects the

remaining deviation from zero is (Bf )−1(Bssr + wt), and

our lower bound is the sum of the resulting costs (up to

the constant C). Notice that the fast controller is extremely

simple - all it does is continually correct any residual noise

so that the state is always kept at zero. This is a crucial

observation: the form of the lower bound highlights a clear

separation between a “smart”, slow controller that does

the planning and a “dumb” reactive fast controller. This

separation is then what we mimic in the design of MRPC,

and also guides our analysis of the algorithm, as is evident

in the following lemma, which provides an upper bound on

the cost of MRPC.

Lemma 3.

MRPC ≤min
s

∑

r∈S

[

k‖sr‖s +

r+k−1
∑

t=r

‖(Bf )−1(Bs
sr +wt)‖f

]

+ 2‖(Bf )−1‖
T
∑

t=1

‖ŵt − wt‖f

Proof. Plugging our control actions into the cost function

and applying the Triangle Inequality, we have

MRPC =
∑

r∈S

[

k‖ŝr‖s +

r+k−1
∑

t=r

‖(Bf )−1(Bsŝr + wt)‖f

]

≤
∑

r∈S

[

k‖ŝr‖s +

r+k−1
∑

t=r

‖(Bf )−1(Bsŝr + ŵt)‖f

]

+
T
∑

t=1

‖(Bf)−1(ŵt − wt)‖f

Now we use the definition of ŝr to obtain the upper bound

min
s

∑

r∈S

[

k‖sr‖s +

r+k−1
∑

t=r

‖(Bf )−1(Bssr + ŵt)‖f

]

+‖(Bf )−1‖

T
∑

t=1

‖ŵt − wt‖f

Notice that the minimization in s depends on the estimates

ŵt, not the true values wt. Applying the Triangle Inequality

once again allows us to produce an upper bound where the

minimization is over the true values:

min
s

∑

r∈S

[

k‖sr‖s +

r+k−1
∑

t=r

‖(Bf )−1(Bssr + wt)‖f

]

+2‖(Bf)−1‖

T
∑

t=1

‖ŵt − wt‖f

This proves the claim.

The combination of Lemmas (2) and (3) immediately yield

Theorem 2.

V. CONCLUDING REMARKS

In this paper we present a simple and general model of

multi-timescale control problems. We prove a hardness result

using a blackbox reduction to online convex optimization,

and show that predictions are necessary to construct a

constant competitive algorithm. Further, we propose a simple

control policy with a clean separation between timescales

that uses only a small number of noisy predictions.

Our decomposition results in a sophisticated, predictive

slow controller and a simple, reactive fast controller. This

framework mirrors the architecture of many real-world con-

trol systems, where a slow, centralized controller guides the

system towards global optimality while fast, decentralized

controllers help to quickly counteract any perturbations that

may arise. Remarkably, despite the simplicity of our fast con-

troller and the fact that our policy has access to only limited

information about the future, we derive strong guarantees on

the performance of our policy. In particular, we prove that the

per-step cost incurred by our algorithm is at most a constant

more than that incurred by the offline optimal, and in some

cases our policy even matches the offline optimal costs.

There are several natural and important problems left

open by our work. Firstly, we do not consider delay in our

model, though many real-world systems feature information-

sharing constraints arising from delay. It would be natural

to add such constraints to the slow controller. Secondly,

it would be interesting to consider a hybrid model that is

distributed across both time and space, i.e one that features

both decentralization and multiple timescales. Most systems

that operate across multiple timescales, such as the smart

grid, also feature both centralized and localized controllers.
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