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Abstract— Deferrable load control is essential for handling
the uncertainties associated with the increasing penetration of
renewable generation. Model predictive control has emerged
as an effective approach for deferrable load control, and has
received considerable attention. Though the average-case per-
formance of model predictive deferrable load control has been
analyzed in prior works, the distribution of the performance
has been elusive. In this paper, we prove strong concentration
results on the load variation obtained by model predictive
deferrable load control. These results highlight that the typical
performance of model predictive deferrable load control is
tightly concentrated around the average-case performance.

I. INTRODUCTION

The electricity grid is at the brink of change. On the
generation side, the penetration of wind and solar in the
energy portfolio is on the rise due to environmental concerns.
And, on the demand side, many smart appliances and devices
with adjustable power consumption levels are entering the
market. The combination of these two changes make genera-
tion less controllable and load less predictable, which makes
the traditional “generation follows load” model of control
much more difficult.

Fortunately, while smart devices make demand forecast-
ing more challenging, they also provide an opportunity to
mitigate the intermittency of wind and solar generation from
the load side by allowing for demand response. There are
two major categories of demand response, direct load control
(DLC) and price-based demand response. See [1] for a
discussion of the contrasts between these approaches.

In this paper we focus on direct load control with the
goal of using demand response to reduce variations of the
aggregate load. This objective has been studied frequently in
the literature, e.g., [2], [3], because reducing the variations of
the aggregate load corresponds to minimizing the generation
cost of the utilities. In particular, large generators with the
smallest marginal costs, e.g., nuclear generators and hydro
generators, have limited ramp rates, i.e., their power output
cannot be adjusted too quickly. So, if load varies frequently,
then it must be balanced by more expensive generators (i.e.,
“peakers”) that have fast ramp rate. Thus, if the load variation
is reduced, then the utility can use the least expensive sources
of power generation to satisfy the electricity demand.

A. Model predictive deferrable load control
There is a growing body of work on direct load control

algorithms, which includes both simulation-based evaluations
[4]–[6] and theoretical performance guarantees [7], [8]. The
most commonly proposed framework for algorithm design
from this literature is, perhaps, model predictive control.

Model predictive control (MPC) is a classical control
algorithm, e.g., see [9] for a survey. MPC can be applied
to settings where unknown disturbances to the system are
present through the robust control paradigm or the certainty

equivalence principle, e.g., see [10]–[12]. In the context of
direct load control, many variations have been proposed.
Scalability and performance in the presence of uncertainty
are essential to MPC algorithms for direct load control. At
this point, there exist model predictive deferrable load control
algorithms that can be fully distributed with guaranteed
convergence to optimal deferrable load schedules, e.g., [3].

However, to this point, the evaluation of model predictive
deferrable load control has focused primarily on average-
case analysis, e.g., [13], [14], or worst-case analysis, e.g.,
[15], [16]. While such analysis provides important insights,
there is still much to learn about the performance of model
predictive deferrable load control.

For example, it is likely that an algorithm has good average
performance but bad worst case performance, and vice versa.
What is really needed is a distributional analysis that tells us
about the “typical” performance, which can say, e.g., that the
load variation will be less than the desired level 95 percent
of the time. But, to this point, no results on the distribution
of the load variation under model predictive deferrable load
control exist.

B. Contributions of this paper

The main contribution of this paper is to provide a
distributional analysis of the load variation under model pre-
dictive deferrable load control. More specifically, we prove
sharp concentration results for the load variation arising from
model predictive distributed load control.

Our results are derived in the context of a standard
formulation of the so-called “optimal deferrable load control”
(OLDC) problem, where we adopt the model predictive
deferrable load control mechanism in [3] since it can be
fully distributed, and average-case analysis suggests that it
performs well in environments with uncertain predictions.

However, in Proposition 4, we provide a new worst case
analysis which states that this model predictive deferrable
load control can be as bad as having no control at all if
predictions are adversarial.

Given this context, the main result of the paper is Theorem
1, which proves a Bernstein-type concentration for the load
variation under model predictive deferrable load control.
This result highlights that the load variation is concentrated
around its mean, and therefore the typical performance is
tightly concentrated around the average performance. Addi-
tionally, the result provides useful performance bounds on,
e.g., the 95th percentile.

Finally, in addition to the usefulness of Theorem 1 in the
context of deferrable load control, the proof technique we de-
velop may also be useful for understanding the distributional
performance of model predictive control in other settings.



II. MODEL

In this paper we consider a standard model for deferrable
load control introduced by [17] and then studied in, e.g.,
[6], [7], [18]. It is a discrete-time model where the time-slot
length matches the timescale at which the power grid system
operator makes control decisions.

The goal is to flatten the aggregate load over the control
horizon t ∈ {1, ..., T}. In practice, the control horizon could
be a day and a time slot could be on the order of minutes. To
formalize the objective of flattening the aggregate load, pre-
vious work has tended to focus on minimizing the variation
of the load:

V :=
1

T

T∑
t=1

(
d(t)− 1

T

T∑
τ=1

d(τ)

)2

, (1)

where d = (d(1), d(2), . . . , d(T )) is the aggregate load
profile at each time slot.

Importantly, the aggregate load consists of two types.
The first type, which is called baseload, includes loads like
lighting and heating, and is stochastic and non-controllable.
Note that renewable generation like wind and solar can be
considered as a negative stochastic and non-controllable load.
Denote the baseload by b = (b(1), b(2), . . . , b(T )), and note
that b can be interpreted as the difference between non-
deferrable load and renewable generation during each time
period.

The second type of load, which is called deferrable
load, consists of devices whose power consumption can
be controlled by the utility, e.g., pool pumps, dryers, and
electric vehicles taking part in direct load control programs
[19], [20]. It is the control of these devices that can be
used to minimize (1), provided that energy constraints and
charging rate constraints are satisfied. To model deferrable
load we consider N devices indexed 1, 2, . . . , N , and let
pn(t) denote the power consumption of device n at time
t for n = 1, 2, . . . , N and t = 1, 2, . . . , T . Further, each
device has associated constraints on the power consumption
as follows

p
n
(t) ≤ pn(t) ≤ p̄n(t), (2a)
T∑
t=1

pn(t) = Pn. (2b)

Note that, using the above, arrival and deadline constraints
can be specified by setting p

n
(t) = p̄n(t) = 0 for t

before arrival and after deadline. Here we assume that the
deferrable loads are continuously adjustable in constraint (2a)
and the power loss due to heat dissipation can be ignored in
constraint (2b). Similar assumptions are made for EV loads
in [3], [19]. Although real appliances may deviate from these
assumptions, we keep these simplifying assumptions as a first
step towards analyzing MPC load control algorithm in the
presence of uncertainty.

Given the previous notation, we can now formally specify
the optimal deferrable load control (ODLC) problem that
is the focus of this paper. Define [k] := {1, 2, . . . , k} for

k ∈ Z+.

ODLC: min
1

T

T∑
t=1

(
d(t)− 1

T

T∑
τ=1

d(τ)

)2

(3)

over pn(t), d(t), ∀n, t

s.t. d(t) = b(t) +

N∑
n=1

pn(t), t ∈ [T ];

p
n
(t) ≤ pn(t) ≤ pn(t), n ∈ [N ], t ∈ [T ];

T∑
t=1

pn(t) = Pn, n ∈ [N ].

An important observation is that ODLC is a convex
optimization problem, but cannot be solved in real time
since the optimal decision at time t depends on future
information about the baseload and the arrivals of deferrable
load. This information is not known exactly, but commonly
there do exist predictions of future baseload and deferrable
load arrivals. So, in practice such predictions are used for
real time control.

Thus, the final component of the model is to specify a
model for the predictions. Crucially, prediction errors should
grow as prediction is made further into the future. Further,
it is likely that errors are correlated, e.g., an underestimate
for time slot t+ 1 likely leads to an underestimate for time
slot t+2. To capture these issues, [3] has suggested a model
based on Weiner filters, and we adopt the same assumptions
here.

Specifically, baseload b is modeled as a random deviation
δb around its expectation b̄ as illustrated in Fig. 1. The
process δb is modeled as a sequence of independent random
variables e(1), . . . , e(T ), each with mean 0 and variance
σ2, passing through a causal filter with impulse response
f (f(τ) = 0 for τ < 0), i.e.,

δb(τ) =

T∑
m=1

e(m)f(τ −m), τ = 1, . . . , T.

Using the current information, one can update the prediction
at time t by

bt(τ) = b̄(τ) +

t∑
m=1

e(m)f(τ −m), τ = 1, . . . , T. (4)

Further, deferrable loads are modeled as random arrivals
over time. Let N(t) be the number of loads that arrive before
(or at) time t for t = 1, ..., T . Define

a(t) :=

N(t)∑
n=N(t−1)+1

Pn, t = 1, . . . , T

as the energy request of deferrable loads that arrive at time
t. We model the total energy request at each time due to
arrival of deferrable loads {a(t)}Tt=1 to be a sequence of
independent random variables with mean λ and variance s2.
Further, let A(t) :=

∑T
τ=t+1 a(τ) denote the total energy

requested after time t for t = 1, 2, . . . , T .
In summary, when attempting to solve ODLC, an al-

gorithm has, at time t, the following information: (i) the
energy request and power consumption bounds of the present



Fig. 1: Diagram of the structure of the baseload model.

deferrable loads, i.e., p
n

, pn, and Pn for n ≤ N(t), with
p̄n(t) = p

n
(t) = 0 for any t beyond the consumption dead-

line; (ii) the expectation E(A(t)) of future energy requests;
and (iii) the prediction bt of the non-deferrable load b.

III. MODEL PREDICTIVE DEFERRABLE LOAD CONTROL

A natural approach for solving the optimal deferrable load
control (ODLC) problem described in the previous section
is model predictive control, which has been applied in many
settings, e.g., see [9] for a survey.

In the context of the ODLC problem, at each time t,
such an approach uses the updated prediction of baseload
bt and the updated prediction of future energy request
E[A(t)] to solve an optimization problem over the remain-
der of the control horizon, and obtains deferrable load
profiles (pn(t), pn(t + 1), . . . , pn(T )) for the remainder
{t, t+ 1, . . . , T} of the control horizon. Only pn(t) will be
implemented at time t, and pn(t + 1), . . . , pn(T ) will be
recomputed in the future with more updated predictions.

Interestingly, previous work has found that the optimiza-
tion problem that is solved should not simply be a truncated
version of the ODLC problem as done in receding horizon
control (RHC). Instead, [3] suggests introducing a pseudo
load q to account for the future arrival of deferrable load, and
plan for the remainder of the entire horizon, giving rise to the
shrinking horizon variant of model predictive control. The
introduction of this term allows for strong analytic guarantees
on performance [3]. Hence, this is the version of model
predictive control we consider in this paper.

Specifically, we consider the model predictive deferrable
load control algorithm described in Algorithm 1, where at

Algorithm 1 Model Predictive Deferrable Load Control
Initialize Pn(1)← Pn for n = 1, 2, . . . , N ;
At time step t = 1, . . . , T ,

1: Update predictions bt and A(t);

2: Solve ODLC-t
(
bt, A(t),

[
Pn(t), pn, pn

]
n∈[N(t)]

)
to

obtain time-t power consumptions pn(t) for deferrable
loads n ≤ N(t) that have already arrived;

3: Update Pn(t+ 1)← Pn(t)− pn(t) for n ≤ N(t);

each time t the following optimization problem is solved

ODLC-t
(
bt, A(t),

[
Pn(t), pn, pn

]
n∈[N(t)]

)

min

T∑
τ=t

N(t)∑
n=1

pn(τ) + q(τ) + bt(τ)

2

over pn(τ), q(τ), n ≤ N(t), τ ≥ t
s.t. p

n
(τ) ≤ pn(τ) ≤ pn(τ), n ≤ N(t), τ ≥ t;
T∑
τ=t

pn(τ) = Pn(t), n ≤ N(t);

q(τ) ≤ q(τ) ≤ q(τ), τ ≥ t;
T∑
τ=t

q(τ) = E(A(t)),

In this formulation, Pn(t) = Pn−
∑t−1
τ=1 pn(τ) is the energy

to be consumed at or after time t, for all n and all t.
Here q can be viewed as “pseudo-load” with the constraint
that it sums to the expected future energy request E(A(t)).
The constraints q, q are predicted values of maximum and
minimum energy request from historical data with q(t) =
q(t) = 0. However, if no prediction is available, we can
simply set q(τ) = 0 and q̄(τ) = E(A(t)) without affecting
the theoretical guarantees of the algorithm.

Importantly, if predictions are exact then Algorithm 1
solves ODLC exactly. Further, prior papers have shown that
Algorithm 1 can be run in a completely distributed manner
and still ensure (fast) convergence to optimal solutions [3].

For our purposes, the most relevant part of previous studies
of Algorithm 1 is that there exists simple characterizations
of the solutions to ODLC-t, which prove quite useful when
analyzing the performance of the algorithm.

Specifically, in cases where there are a large number of
deferrable loads, the solutions to ODLC-t satisfy a property
that is referred to as t-valley-filling.

Definition 1. For any time t = 1, . . . , T , a feasible schedule
(p, q) is called t-valley-filling, if there exists C(t) ∈ R such
that
N(t)∑
n=1

pn(τ) + q(τ) + bt(τ) = C(t), τ = t, . . . , T. (5)

Proposition 1 ( [3]). At time t = 1, . . . , T , a t-valley-filling
deferrable load schedule, if it exists, solves ODLC-t.

This characterization provides a strong basis for the perfor-
mance analysis of Algorithm 1. To see this, note that if there
exists a t-valley-filling solution then, besides being optimal,
it ensures that the aggregate load satisfies

d(t) =
1

T − t+ 1

N(t)∑
n=1

Pn(t) + E(A(t)) +

T∑
τ=t

bt(τ)


(6)

for t = 1, 2, . . . , T . This property tend to be satisfied when
the penetration of deferrable load is high, and it gives us
a nice structure to analyze the load variance obtained by
Algorithm 1. Subsequently, we assume that a t-valley-filling
exists for each t throughout the paper.



IV. PERFORMANCE ANALYSIS

The main focus of this paper is the performance analysis
of model predictive deferrable load control (Algorithm 1). As
discussed, the algorithm has been introduced in [3] followed
by the average-case performance analysis. The goal of this
paper is to perform a distributional analysis, rather than
simply average-case analysis. However, to provide context
we first introduce the previous average-case analysis and
contrast it with a (novel) worst-case analysis.

A. Average-case analysis (previous work)

An average-case analysis of Algorithm 1 was performed
in [3]. The following is the main result from that paper.

Proposition 2 ( [3]). If a t-valley-filling solution exists for
t = 1, 2, . . . , T , then the expected load variation obtained
by Algorithm 1 is

E(V ) =
s2

T

T∑
t=2

1

t
+
σ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
. (7)

where F (t) :=
∑t
m=0 f(m) for t = 0, . . . , T .

Proposition 2 explicitly highlights that E(V ) → 0 as
the predictions get precise, i.e., σ → 0 and s → 0. More
importantly, it follows from Proposition 2 that E(V ) tends
to 0 as time horizon T increases, provided that the error
correlation f(t) decays sufficiently fast with t.

Proposition 3 ( [3]). If (6) holds, and the error correlation
f ∼ O(t−

1
2−α) for some α > 0, then E(V )→ 0 as T →∞.

This condition is practically relevant since the error cor-
relation f(t) usually decays fast with t and the time horizon
T is usually long, which implies that Algorithm 1 should
typically have good average case performance.

B. Worst-case analysis

The results surveyed above highlight that Algorithm 1
performs well on average; however, it is often important
to guarantee more than average case performance. For that
reason, many results in the literature focus on worst case,
e.g., [12], [21], [22]. While no existing results apply directly
to the setting of this paper, we can show that the worst-case
performance of Algorithm 1 is quite bad.

To see this, let us consider a setting where the prediction
error for generation, e, and deferrable load, a, have bounded
deviations from their means (0 and λ respectively).

Definition 2. We say that prediction errors are bounded if
there exist ε1 and ε2 such that, at any time t = 1, . . . , T ,

|a(t)− λ| ≤ ε1, |e(t)| ≤ ε2. (8)

In this situation, it is straightforward to see that the worst
case performance of Algorithm 1 can potentially be quite
bad. For a, b ∈ R, define a ∨ b := max{a, b}.

Proposition 4. If a t-valley-filling solution exists for t =
1, 2, . . . , T , and prediction errors are bounded by ε1 and
ε2 as in (8), then the worst-case load variation supa,e V

achieved by Algorithm 1 is

sup
a,e

V = ε21

(
1− 1

T

T∑
k=1

1

k

)

+
ε22
T 2

T−1∑
τ=0

T−1∑
s=0

(
T

τ ∨ s+ 1
− 1

)
|F (τ)F (s)|.

The worst-case performance is achieved when all predic-
tion errors has the maximum magnitude with the appropriate
signs—the case where a(t) = λ + ε1 and e(t) = ε2 ·
sgn(F (T − t)) for all t. The proof of this proposition can
be found in the technical report [23].

Corollary 1. If a t-valley-filling solution exists for t =
1, 2, . . . , T , and prediction errors are bounded by ε1 and
ε2 as in (8), then the worst-case load variation supa,e V
achieved by Algorithm 1 is lower bounded as

sup
a,e

V ≥ ε21

(
1− 1

T

T∑
k=1

1

k

)
≈ ε21

(
1− lnT

T

)
.

Interestingly, the form of Corollary 1 implies that, in the
worst-case, Algorithm 1 can be as bad as having no control
at all: the time averaged load variation behaves like the worst
one step load variation. Meanwhile, recall from Proposition 3
that the average performance E(V )→ 0 as T →∞. Hence,
while the the load variation V has a small mean E(V ), it
can be quite large in the worst case.

V. DISTRIBUTIONAL ANALYSIS

The contrast between the worst-case analysis (Proposition
4) and average-case analysis (Proposition 2) motivates the
main goal of this paper — to understand how often the “bad
cases,” where V takes large values, happen. That is, we want
to understand what the typical variations of V obtained by
Algorithm 1 look like.

A. Concentration bounds

We start with analyzing the tail probability of V . Con-
cretely, our focus is on

Vη := min{c ∈ R | V ≤ c with probability η},

which denotes the minimum value c such that V ≤ c with
probability η for η ∈ [0, 1]. Our main result provides upper
bounds on Vη , for large values of η, for arbitrary of prediction
error distributions.

More specifically, we prove that with high probability, the
load variation of Algorithm 1 does not deviate much from
its average-case performance, i.e., we prove a concentration
result for model predictive deferrable load control.

Theorem 1. Suppose a t-valley filling solution exists for t =
1, 2, . . . , T , and prediction errors bounded by ε1 and ε2 as
in (8). Then the distribution of the load variation V obtained
by Algorithm 1 satisfies a Bernstein type concentration, i.e.,

P(V − EV > t) ≤ exp

(
−t2

16ε2λ1(2EV + t)

)
(9)



where ε = max(ε1, ε2) and

λ1 = max

(
lnT

T
,

1

T 2

T−1∑
t=0

F 2(t)
T − t+ 1

t+ 1

)
.

The theorem is proved in the technical report [23]. The
proof relies on the technical assumption that t-valley-filling
profiles exist, which tends to be satisfied with high pene-
tration of deferrable loads. However, in Section V-C, it is
shown that the concentration phenomenon still holds in real
data traces when this assumption is removed.

Theorem 1 implies that the actual performance of Algo-
rithm 1 does not deviate much from its mean. To illustrate
this, consider the following example:

Example 1. Suppose that the baseload prediction is precise,
i.e., ε2 = 0. Then the average load variation is

E[V ] =
s2

T

T∑
t=2

1

t
≈ s2 lnT/T

and the tail bound in Theorem 1 can be simplified as

P(V − EV > cEV ) ≤ exp

(
− c2

2 + c

s2

16ε2

)
.

Recall that constant s is the variance of a and constant ε
is the maximum deviation of a from its mean. The above
expression shows that, with high probability, V is at most a
constant c+ 1 times of its mean EV .

More generally, the quantity λ1 controls the decaying
speed of the tail bound in (9): the smaller λ1, the faster the
tail bound P(V −EV > t) decays in t, and the load variation
V achieved by Algorithm 1 concentrates sharper around its
mean EV . The following corollary highlights that λ1 tends
to 0 as T increases, provided that the error correlation f(t)
decays fast enough in t. Note that the condition on f is the
same for Corollary 2 and Proposition 3.

Corollary 2. Under the assumptions of Theorem 1, if the
error correlation f ∼ O(t−

1
2−α) for some α > 0, then

λ1 → 0 as T →∞.

A detailed proof of Theorem 1 is included in the technical
report [23]. Note that the bound we obtained in Theorem 1
is much sharper than the Markov and Chebyshev bounds for
large t. This is done by controlling the moment generating
function of V using the Log-Sobolev inequality similar to
the technique used in [24].

B. Bounds on the variance
To further understand the scale of typical load variation V

under Algorithm 1, it is useful to also study its variance. In
addition, the form of the variance highlights the impact of
the tight concentration shown in Theorem 1.

Theorem 2. Suppose a t-valley-filling solution exists for t =
1, 2, . . . , T , and prediction errors are bounded by ε1 and
ε2 as in (8). Then the variance var(V ) of V obtained by
Algorithm 1 is bounded above by

var(V ) ≤
(

4ε1s lnT

T

)2

+

(
4ε2σ

T 2

T−1∑
t=0

F 2(t)
T − t+ 1

t+ 1

)2

.

(10)

To interpret this result, let var(V ) denote the upper bound
on var(V ) provided in (10). Theorem 2 implies that EV and√

var(V ) scale similarly with T .
It immediately follows from the Chebyshev inequality that

V can only deviate significantly from E(V ) with a small
probability.

Corollary 3. Under the assumptions in Theorem 2, for t > 0,

P(|V − EV | > t)

≤ 1

t2

(4ε1s lnT

T

)2

+

(
4ε2σ

T 2

T−1∑
τ=0

F 2(τ)
T − τ + 1

τ + 1

)2
 .

(11)

While the tail bound (9) in Theorem 1 scales at least
exponentially in t, the Chebyshev inequality only provides a
tail bound (11) that scales inverse quadratically in t. Hence
for large t, (9) provides a much tighter tail bound. However
for small values of t, the tail bound (11) is usually tighter
since the variance var(V ) is well estimated in (10).

Furthermore, the variance var(V ) vanishes as T expands,
provided that f(t) decays sufficiently fast as t grows, as
formally stated in the following corollary.

Corollary 4. Under the assumptions of Theorem 2, if the
error correlation f ∼ O(t−

1
2−α) for some α > 0, then

var(V )→ 0 as T →∞.

Note that the condition on f parallels that in Proposition 3.

C. A case study
Theorems 1 and 2 provide theoretical guarantees that

the load variation V obtained by Algorithm 1 concentrates
around its mean, if prediction errors are bounded as in (8) and
error correlation decays sufficiently fast (c.f. Corollary 2).
Thus, they give the intuition that the expected performance
of Algorithm 1 is a useful metric to focus on, and does
indeed give an indication of the “typical” performance of
the algorithm.

However, our analysis is based on the assumption that a t-
valley-filling solution exists, which relies on the penetration
of deferrable load being sufficiently high.

Given this assumption in the analytic results, it is im-
portant to understand the robustness of the results to this
assumption. To that end, here we provide a case study to
demonstrate that this intuition is robust to the t-valley-filling
assumption.

In our case study, we mimic the setting of [3]. In particular,
we use 24 hour residential load trace in the Southern Califor-
nia Edison (SCE) service area averaged over the year 2012
and 2013 [25] as the non-deferrable load, and wind power
generation data from the Alberta Electric System Operator
from 2004 to 2012 [26]. The wind power generation data
is scaled so that its average over 9 years corresponds to
30% penetration level, and pick the wind generation of a
random day as renewable during each run. Similar to [3], we
generate random prediction error in baseload and arrival of
deferrable load using a martingale forecasting process, which
is a standard model for an unbiased prediction process that
improves over time.
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Fig. 2: The empirical cumulative distribution function of
the load variance under Algorithm 1 over 24 hour control
horizon using real data. The red line represents the analytic
bound on the 90% confidence interval computed from Theo-
rem 1, and the black line shows the empirical mean.

Given this setting, we simulate 100 instances in each
scenario and compare the results with the Theorems 1. The
results are shown in Fig. 2 where we plot the cumulative
distribution (CDF) of the load variation produced by Algo-
rithm 1 under two different scenarios. Specifically, in Fig. 2a,
we assume the prediction error in wind power generation
is 30%, and in Fig. 2b, we assume the prediction error is
10%. We plot the CDF on the same scale in both plots and
additionally show an analytic bound on the 90% confidence
interval computed from Theorem 1. For both cases, the
results highlight a strong concentration around the mean, and
the analytic bound from Theorem 1 is valid despite the fact
that the t-valley-filling assumption is not satisfied. Further,
note that the analytic bound is much tighter when prediction
error is small, which coincides the statement of Theorem 1.

VI. CONCLUSION

We have studied a promising algorithm for direct control
demand response: model predictive deferrable load control.
In particular, we have, for the first time, provided a distri-
butional analysis of the algorithm and shown that the load
variance is tightly concentrated around its mean. Thus, our
results highlight that the typical performance one should
expect to see with model predictive deferrable load control is
not-too-different from the average-case analysis. Importantly,
the proof technique we develop may be useful for the
analysis of model predictive control in more general settings
as well.

The main limitation in our analysis (which is also true for
the prior stochastic analysis of model predictive deferrable
load control) is the assumption that a t-valley-filling solution
exists. Practically, one can expect this to be satisfied if the
penetration of deferrable loads is high; however, relaxing
the need for this technical assumption remains an important
challenge. Interestingly, the numerical results we report here
highlight that one should also expect a tight concentration in
the case where a t-valley-filling solution does not exist.
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APPENDIX

A. Proof of Theorem 1
The theorem relies on a variant of the Log-Sobolev

inequality provided in the following lemma.

Lemma 1 (Theorem 3.2, [27]). Let f : Rn 7→ R be convex
and random variable X be supported on [−d/2, d/2]n, then

E[exp(f(X))f(X)]− E[exp(f(X))] logE[exp(f(X))]

≤ d2

2
E[exp(f(X))||∇f(X)||2]. (12)

If f is further “self-bounded”, then its tail probability can
be bounded as in the following lemma.

Lemma 2. Let f : Rn 7→ R be convex and random variable
X be supported on [−d/2, d/2]n. If E[f(X)] = 0 and f
satisfies the following self-bounding property

||∇f ||2 ≤ af + b, (13)

then the tail probability of f(X) can be bound as

P {f(X) > t} ≤ exp

(
−t2

d2(2b+ at)

)
. (14)

Proof. Denote the moment generating function of f(X) by

m(θ) := Eeθf(X), θ > 0.

The function θf : Rn 7→ R is convex, and therefore it follows
from Lemma 1 that

E
[
eθfθf

]
− E

[
eθf
]

lnE
[
eθf
]
≤ d2

2
E
[
eθf ||θ∇f ||2

]
,

θm′(θ)−m(θ) lnm(θ) ≤ 1

2
θ2d2E[eθf ||∇f ||2].

According to the self-bounding property (13), one has

θm′(θ)−m(θ) lnm(θ) ≤ 1

2
θ2d2E[eθf (af + b)]

=
1

2
θ2d2 [am′(θ) + bm(θ)] .

Divide both sides by θ2m(θ) to get

d

dθ

[(
1

θ
− ad2

2

)
lnm(θ)

]
≤ bd2

2
.

Integrate both sides from 0 to s to get(
1

θ
− ad2

2

)
lnm(θ)

∣∣∣∣s
θ=0

≤ 1

2
bd2s

for s ≥ 0. Noting that m(0) = 1 and m′(0) = Ef = 0, one
has

lim
θ→0+

(
1

θ
− ad2

2

)
lnm(θ) = 0,

and therefore (
1

s
− ad2

2

)
lnm(s) ≤ 1

2
bd2s, (15)

for s ≥ 0. We can bound the tail probability P{f > t} with
the control (15) over the moment generating function m(s).

In particular, one has

P{f > t} = P
{
esf > est

}
≤ e−stE

[
esf
]

= exp[−st+ lnm(s)]

≤ exp

[
−st+

bd2s2

2− asd2

]
,

for s ≥ 0. Choose s = t/(bd2 + ad2t/2) to get

P{f > t} ≤ exp

(
−t2

d2(2b+ at)

)
.

Proof of Theorem 1. It has been computed in [3] that the
load variance V obtained by Algorithm 1 is composed of
two parts:

V = V1 + V2,

where

V1 :=
1

T

T∑
t=1

[
t∑

τ=1

τ − 1

T (T − τ + 1)
(a(τ)− λ)

−
T∑

τ=t+1

1

T
(a(τ)− λ)

]2
is the variance due to the prediction error on deferrable load
and

V2 :=
1

T

T∑
t=1

[
t∑

τ=1

τ − 1

T (T − τ + 1)
e(τ)F (T − τ)

−
T∑

τ=t+1

1

T
e(τ)F (T − τ)

]2
is the variance due to the prediction error on baseload.

Let x(τ) := a(τ)− λ for τ = 1, 2, . . . , T , then

V1 =
1

T

T∑
t=1

[
t∑

τ=1

τ − 1

T (T − τ + 1)
x(τ)−

T∑
τ=t+1

1

T
x(τ)

]2
=

1

T
||Bx||22

where the T × T matrix B is given by

Btτ :=

{
τ−1

T (T−τ+1) τ ≤ t
− 1
T τ > t

, 1 ≤ t, τ ≤ T.

Similarly, the variance V2 due to the prediction error on
baseload can be written as

V2 = g(e) =
1

T
||Ce||22

where the T × T matrix C is given by

Ctτ :=

{
τ−1

T (T−τ+1)F (T − τ), τ ≤ t
− 1
T F (T − τ), τ > t

for 1 ≤ t, τ ≤ T . Therefore, the load variance

V = V1 + V2 =
1

T
‖Ay‖22



where
A =

[
B 0
0 C

]
, y =

[
x
e

]
.

Define a centered random variable

Z := h(y) := V − EV =
1

T
||Ay||2 − EV

and note that the function h is convex. Let λmax be the
maximum eigenvalue of AAT /T , then

||∇h(y)||2 =
4

T 2
||ATAy||2 =

4

T
(Ay)T

(
AAT

T

)
(Ay)

≤ 4λmax

T
(Ay)T (Ay) = 4λmax[h(y) + EV ].

According to the bounded prediction error assumption (8),
one has |y| ≤ ε componentwise. Then, apply Lemma 2 to
the random variable Z to obtain

P{Z > t} ≤ exp

(
− t2

16λmaxε2(2EV + t)

)
for t > 0, i.e.,

P{V − EV > t} ≤ exp

(
− t2

16λmaxε2(2EV + t)

)
for t > 0. Finally, the largest eigenvalue λmax of AAT /T
can be bounded above as

λmax = max
y

yTAy

yT y
= max

x,e

xTBx+ eTCe

xTx+ eT e

≤ max
x,e

λBmaxx
Tx+ λCmaxe

T e

xTx+ eT e

≤ max
x,e

max(λBmax, λ
C
max)(xTx+ eT e)

xTx+ eT e

= max(λBmax, λ
C
max)

≤ max

(
tr
(
BBT

T

)
, tr
(
CCT

T

))
= max

(
lnT

T
,

1

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1

)
=: λ1.

which completes the proof of Theorem 1.


