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Abstract—Cloud computing is becoming one of the ubiquitous
computing paradigms for enterprises and organizations in recent
years. Due to the volatility of system states such as cloud resource
price and workload demand, it is challenging to provision cloud
resources efficiently. This paper studies online cloud resource
provisioning problems under cost budget where no accurate or
distributional future information is available. We develop an
algorithmic framework and design online algorithms based on
the framework. We prove the competitive ratio of the proposed
algorithms. We further show the proposed algorithms have better
performance than a prominent existing algorithm named CR-
Pursuit. While prior works on the problem require the objective
functions to be concave, the proposed algorithms work for non-
convex and non-concave objective functions. We conduct real-
world trace-driven simulations. Results highlight the proposed
algorithms outperform baselines significantly over a wide range
of settings.

I. INTRODUCTION

The market size of cloud services has been increasing
rapidly over the past 10 years, increasing from $68.3 billion
in 2010 to $257.5 billion (expected value) in 2020 [1]. Some
significant advantages for enterprises to move from local hosts
to the cloud are high scalability, low cost, high reliability, and
easy maintenance [2]. With the advantages of cloud comput-
ing, the only problem left for enterprises is provisioning cloud
resources in a quality of service (QoS) optimal manner. Then
organizations can focus on their core business rather than on
computing infrastructure.

Renewable electricity generation increases continuously,
and the share of renewable electricity generation in global
electricity generation reaches 28% in 2020 [3]. However,
renewable energies, such as solar energy and wind energy,
are uncertain, which may cause an imbalance between supply
and demand. To maintain a balance between supply and
demand, time-varying electricity pricing is adopted. Due to
time-varying electric prices and time-varying utilization of
cloud resources, the cloud service provider changes the price
of cloud resources over time to maximize the revenue [4].
Besides, the QoS that an enterprise experienced is related to
the amount of cloud resources available. Therefore, the utility
function, which maps an enterprise’s costs to the QoS of the
enterprise, changes over time.

Motivated by the above observations, we focus on a scenario
of provisioning cloud resources over a time horizon, where an
enterprise decides the expenditure for renting cloud resources
in response to real-time utility functions. The goal of the
problem is to maximize the QoS of the enterprise over the
time horizon. Naturally, there is a constraint on the total
cost over the whole time horizon, limiting how much of the
money can be used in total during the system’s operating time,
which is a typical constraint in online resource provisioning
applications [5], [6]. We refer to the problem as Online cloud
Resources Provisioning problem under cost budget (ORP).

Several different methods have been proposed for online
resource provisioning. Some methods that require the system
states (utility functions) to have a stationary distribution [7]–
[9]. Other methods require a nice structure of the utility
functions, i.e., concave or linear [5], [10]. All the methods
require precise current utility function at each time slot. For
real-world applications, the utility functions are not randomly
drawn from a set of utility functions, i.e., system states do
not have a stationary distribution. For example, as we can
see from Figure 1, cloud virtue machines’ prices neither
follow a given trajectory nor have a stationary distribution.
In addition, the utility functions are not known precisely
at the beginning of the corresponding time slots for real-
world applications [11]. In this paper, we take the above
features of real-world applications into account as follows.
First, no accurate or distributional information about future
utility functions is available under our setting, while [8], [9]
do not work under this setting. Second, different from the
literature [5], [10], the utility functions are not necessary to be
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Fig. 1: Four traces of real-world prices per machine hour (in
dollars) from Amazon Elastic Compute Cloud (Amazon EC2).978-0-7381-3207-5/21/$31.00 ©2021 IEEE
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concave or linear. Moreover, at the beginning of each time slot,
only lower and upper bounds of the current utility function are
known to the decision-maker, while the explicit utility function
is required in the literature [5], [8], [10].

Our main contributions in this paper are as follows.
• We formulate an online cloud resource provisioning prob-

lem under cost budget to maximize the QoS of enterprises
in Section II. Our formulation relaxes structural con-
straints (linear, convex, and concave) of utility functions
and can naturally handle the uncertainties in estimating
current utility function.

• We propose an algorithmic framework named CRT for
ORP*, a special case of ORP, in Section III-A. We
provide a scheme named PARL for general ORP based on
CRT in Section IV. The CRT-based PARL can achieve a
competitive ratio of c(1+ln(θ)), where c is the parameter
that measures the maximum uncertainty of utility func-
tions and θ is the parameter that bounds changes of utility
functions over time. The proposed algorithms have better
performance than a prominent existing algorithm named
CR-Pursuit.

• Our proposed algorithms are evaluated by trace-driven
simulations. The results highlight that the proposed algo-
rithm outperforms baseline algorithms used in practice.

The remainder of this paper is organized as follows. Sec-
tion II presents the problem formulation. Section III pro-
poses the CRT framework for a special case of the problem.
Section IV provides a scheme for general ORP based on
the algorithms proposed in Section III. Section V shows
the performance evaluation of our algorithms. Section VI
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we formulate the online cloud resource
provisioning problem with cost budget.

A. System Model

There is an enterprise operating in slotted time, i.e., t ∈
[T ] , {1, 2, · · · , T}. The enterprise serves the requests of its
users on rented cloud resources and its permanently owned
resources. The cost of permanently owned resources is fixed,
and the enterprise has to pay for using cloud resources. At
the beginning of each time slot t ∈ [T ], the enterprise spends
some money for renting cloud resources, i.e., virtual machines,
to serve its users. The quality of service at time slot t is a
function of the amount of resources available at time slot t.
The goal of the enterprise is to maximize the time cumulative
quality of service, subject to the total cost budget for renting
cloud resources. Motivated by the fact that the enterprise does
not know when the users stop requesting service, we assume
that the number of time slots, T , is unknown to the enterprise
beforehand.

a) Cost and Cost Constraints: At the beginning of each
time slot t ∈ [T ], the enterprise chooses an online decision xt
(in dollars) where xt represents the amount of money spent
on renting cloud resources at time slot t. xt is chosen from

a compact space [0, δ], i.e., 0 ≤ xt ≤ δ for t ∈ [T ]. The
constraint xt ≤ δ, i.e., the enterprise can only spend a certain
amount of money per time slot. In addition, there exists a finite
total starting cost budget ∆ (in dollars) from which all the
costs over t ∈ [T ] are sourced, where δ ≤ ∆. The cost budget
constraint can be mathematically stated as

∑T
t=1 xt ≤ ∆. ∆

is the cost budget preemptively specified for renting cloud
resources. That is, ∆ is known to the enterprise in advance.

b) Quality of Service: At each time slot t ∈ [T ], there
is a quality of service corresponding with the cost of renting
cloud resources. The quality of service at time slot t is denoted
by yt, which is a function of xt. In particular, yt = ft(xt)
where ft(·) is the utility function of time slot t that maps
costs at time slot t to qualities of service at time slot t, i.e.,
ft : [0, δ] → IR+ where IR+ is the set of non-negative real
numbers. We assume ft(0) = 0 for t ∈ [T ], i.e., we set the
quality of service as 0 if there is no cloud resources rented
for serving the users. Note that, xt = 0 does not mean the
users’ requests are not served at all, because the enterprise has
an amount of permanently owned resources which can satisfy
the minimum QoS requirement of the users. Utility function
ft(·) changes over time, because the quality of service is a
function of the amount of cloud resources available and the
unite price of cloud resources changes over time [4]. Let f1:t

be the sequence of utility functions from time slot 1 to time
slot t. For t ∈ [T ], ft(xt) is differentiable over [0, δ]. We have
the following assumptions for f(t), t ∈ [T ].

Assumption 1. For t ∈ [T ], ft(·) satisfies p(t) ≤ f ′t(xt) ≤
cp(t) for xt ∈ [0, δ], where c ≥ 1 is known in advance.

Assumption 2. p(t) ∈ [L,U ] for t ∈ [T ], and the ratio of U
to L, denoted by θ, is known in advance.

In the only prior work that considers non stationary system
states and non-linear utility functions [5], utility functions are
assumed to be differentiable, concave and p(t) ≤ f ′t(xt) ≤
cp(t) for t ∈ [T ]. However, in real-world systems, the utility
functions may not be concave, e.g., utility functions in [12]–
[14] are onconvex-nonconcave and hitting and movement costs
of online problems with predictions could be non-concave
in [15]. Therefore, in Assumption 1, we relax the concavity
assumption in the literature, and we only require that f ′t(xt) is
bounded by p(t) and cp(t). Parameter c can not only represents
the fluctuation of marginal utility of utility functions as in [5],
but also it can reflect the short term prediction error, e.g., at
the beginning of time slot t, the decision maker can forecast
the marginal utility of time slot t is between p(t) and cp(t)
but is not sure what is the explicit value. As in [5], we assume
c is known to the decision maker at the very beginning, and c
is small for many interesting problems. c can be obtained by
historical information about utility functions when it represents
the fluctuation of marginal utility of utility functions within
time slots as in [5], and c can be obtained by performance
parameters of the short term predictor when it measures the
short-term prediction error. Assumption 2 requires that p(t),
the lower bound of marginal utilities at time slot t, is bounded
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by L and U for t ∈ [T ], and the ratio of U to L is known
in advance, which is a standard assumption of competitive
online optimization problems in the literature [5], [10], [16]–
[18]. The duration of each time slot depends on how rapidly
does the utility function changes over time. The duration could
be several minutes, an hour, a day, and so on depending on
the system.

c) Information Revealing Manner: At the beginning of
time slot t ∈ [T ], the decision-maker only know lower bound
of utility function ft(·), while previous works require precise
ft(xt) [5], [10], [18]. At the beginning of each time slot
t ∈ [T ], p(t), the lower bound of f ′t(xt) for xt ∈ [0, δ],
is revealed. Upon observing p(t), online algorithms have to
choose an online decision xt.

B. Online Optimization Problem Formulation
The online optimization problem is to maximize the time

cumulative quality of service while simultaneously respecting
the given cost budget. We refer to the problem as online Cloud
Resources Provisioning problem under cost budget (ORP).
ORP can be mathematically stated as follows.

max
xt,t∈[T ]

T∑
t=1

ft(xt)

s.t.
T∑
t=1

xt ≤ ∆,

xt ∈ [0, δ], ∀t ∈ [T ].

(ORP)

At the beginning of each time slot t ∈ [T ], the enterprise
observes information about the current utility function ft(·),
i.e., p(t), and decides xt, the amount of money spent on
renting cloud resources. The quality of service at time slot
t is ft(xt). For an online algorithm alg and input utility
function sequence f1:T , the time cumulative quality of service,
the goal of the system, is denoted by Qalg(f1:T ). For input
utility function f1:T , the corresponding optimal offline time
cumulative quality of service is denoted by Q∗(f1:T ).

In this paper, we design online algorithms for ORP, and the
performance of the proposed online algorithms is measured
in terms of competitive ratio. For online algorithms, the
competitive ratio is defined as follows.

Definition 1. A online algorithm alg for ORP is called π-
competitive if Q∗(f1:T )

Qalg(f1:T )
≤ π holds for all f1:T ∈ FT , where

Qalg(f1:T ) represents the quality of service under alg on f1:T

and Q∗(f1:T ) is the optimal offline quality of service on f1:T .

For the sake of simplify, we first consider a special case of
ORP where δ = ∆ in Section III. We use ORP* to denote
the ORP problem with δ = ∆ in the rest of this paper.

III. ONLINE ALGORITHM DESIGN AND ANALYSIS FOR
ORP*

In this section, we propose an algorithmic framework to
design online algorithms for ORP*, i.e., ORP with δ = ∆. We
present the algorithmic framework in Section III-A. A method
for general ORP problems is proposed in Section IV based on
the algorithms in this section.

Algorithm 1: CRT(ω) for ORP*

1 Set parameter ω;
2 Set Q(h1:0) = 0;
3 while t ≤ T do
4 Solve (1) to get Q(h1:t) and solve (3) to get xωt ;
5 Set the decision at time slot t as xωt ;
6 end

A. Online Algorithm Design for ORP*

In this subsection, we propose an algorithmic framework
called Competitive Ratio Tracker (CRT) for ORP*. CRT has
a single parameter ω, which adjusting how aggressively CRT
tries to match the optimal offline objective value of the
problem, i.e., Q∗(f1:T ). We use CRT(ω) to denote the CRT-
based algorithm with parameter ω. We use xωt to denote the
decision at time slot t under CRT(ω).

At the beginning of each time slot, CRT(ω) estimates the
optimal offline objective value. To be more specific, CRT(ω)
assumes T = t, i.e., the system only lasts for t time slots, and
ht(xt) , c · p(τ)xτ , τ ∈ [t] are the utility functions. We use
Q(h1:t) to denote the optimal offline objective value estimated
at the beginning of time slot t. In other words, Q(h1:t) equals
the optimal objective value of ORP with input utility functions
as h1:t, i.e., the optimal objective value of

max
xτ ,τ∈[t]

t∑
τ=1

hτ (xτ ) =

t∑
τ=1

c · p(τ)xτ

s.t.
t∑

τ=1

xτ ≤ δ,

xτ ∈ [0, δ], ∀τ ∈ [t].

Since the objective functions are linear, Q(h1:t) is equivalent
to

Q(h1:t) =c · δ ·max {p(τ)|τ ≤ t}
= max {Q(h1:t−1), cδp(t)} ,

(1)

where Q(h1:0) , 0. Since Q(h1:t−1) is known at the begin-
ning of tome slot t, the time complexity of computing Q(h1:t)
at each time slot t is O(1). After having Q(h1:t), CRT(ω)
chooses xωt by solving

t∑
τ=1

p(τ)xωτ =
1

ω
Q(h1:t). (2)

(2) is equivalent to

xωt =
Q(h1:t)−Q(h1:t−1)

ω · p(t)
. (3)

That is, CRT(ω) sets the cost of each time slot t ∈ [T ] as
xωt by (3). We formally state CRT(ω) in Algorithm 1. Note
that the time complexity for solving an online decision at the
beginning of each time slot is O(1), which is extraordinarily
time-efficient.

Next, we show a sufficient condition for CRT(ω) to be ω-
competitive.

Lemma 1. For any ω, if
∑T
t=1 x

ω
t ≤ δ under all possible

input utility functions, CRT(ω) is feasible and ω-competitive
for ORP*.
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The proof of Lemma 1 is found in our technical report [19].
For improper parameter ω, the decisions given by CRT(ω)
may be infeasible, i.e.

∑T
t=1 x

ω
t > δ. Since Lemma 1 holds,

we then analyze the performance of CRT-based algorithms
by finding the minimum ω such that

∑T
t=1 x

ω
t ≤ δ under

all possible input utility functions. The minimum ω such that∑T
t=1 x

ω
t ≤ δ under all possible input utility functions is

shown in Lemma 2 as follows.

Lemma 2. For any ω ≥ ω∗ = c · (1 + log(θ), we have∑T
t=1 x

ω
t ≤ δ.

The proof of Lemma 2 is found in our technical re-
port [19].Then, we have the main result as follow.

Theorem 1. For any ω ≥ ω∗ = c · (1 + ln(θ)), CRT(ω) is
feasible and ω-competitive for ORP*.

Proof. By combining Lemma 1 and Lemma 2, Theorem 1 is
straightforward. Lemma 1 says that CRT(ω) is feasible and ω-
competitive for ORP* if

∑T
t=1 x

ω
t ≤ δ and Lemma 2 shows

that
∑T
t=1 x

ω
t ≤ δ if ω ≥ ω∗. That is, CRT(ω) is feasible and

ω-competitive for ORP* if ω ≥ ω∗.

From [5], c is bounded and small for lots of interest-
ing applications. From Theorem 1, the optimal algorithm
among CRT(ω), ω ≥ ω∗ is CRT(ω∗), which is feasible and
c · (1 + ln(θ))-competitive for ORP*. Since the optimal algo-
rithm among CRT(ω), ω ≥ ω∗ is CRT(ω∗), we automatically
set ω = ω∗ when we apply CRT. Next, we show a lower
bound of the optimal competitive for ORP* and general ORP.

Theorem 2. The optimal competitive ratio for ORP is
lower bounded by 1 + ln(θ) and upper bounded by ω∗ =
c (1 + ln(θ)).

The proof of Theorem 2 is omitted due to space limitations.
The competitive ratio of ORP* with concave objective func-
tions is proved to be lower bounded by 1 + ln(θ) in [5], so
the optimal competitive ratio of ORP is at least 1 + ln(θ).

CRT(ω∗) has the following highlights compared to CR-
pursuit in [5]. First, CRT(ω∗) does not require to know ft(xt)
precisely at the beginning of time slot t, while CR-pursuit
requires precise ft(xt). Second, although the competitive ratio
of CRT(ω∗) is equivalent to that of CR-pursuit, the decision
of each time slot made by CRT(ω∗) is no less that of CR-
pursuit. That is, the performance of CRT(ω∗) is better than CR-
pursuit under all possible input utility functions. In addition, as
for time complexity, CRT(ω∗) needs O(1) time complexity to
compute an online decision, while CR-pursuit needs to solve
a convex optimization for computing an online decision. In
conclusion, compared with CR-pursuit, CRT(ω∗) is of low
computing time complexity, better performance, and has more
applications.

IV. ALGORITHM DESIGN FOR GENERAL ORP WITH δ < ∆

In this section, we provide a scheme to solve general ORP
with δ < ∆ based on CRT. We use PARL to denote the
scheme. We use PARL( CRT) to denote the CRT-based PARL

scheme for general ORP with δ < ∆. We consider ORP with
∆/δ ∈ Z+ and ∆/δ /∈ Z+ in Section IV-A and Section IV-B,
respectively.

A. PARL for ORP with ∆/δ ∈ Z+

Since ∆/δ ∈ Z+, let integer N equals ∆
δ . PARL considers

ORP as N parallel ORP* systems as shown in Figure 2,
where each ORP* has a total cost budget of δ. Let xnt
be the decision of the ith ORP* at time slot t. pn(t) is
the input of the ith ORP* system at time slot t. At the
beginning of each time slot t, PARL observes p(t) and
updates pn(t), n ∈ [N ]. In particular, the pn(t), n ∈ [N ]
are updated as follows. Set pn(0) = 0 for n ∈ [N ]. Let
qn(t) = max{pn(τ)|τ ∈ [t]}. At the beginning of each time
slot t ∈ [T ], let n∗t = arg min{qn(t− 1)|n ∈ [N ]} where ties
are broken randomly. Then, update pn(t), n ∈ [N ] by letting
pn

∗
t (t) = p(t) and pn(t) = pn(t− 1) for n 6= n∗t .
Under PARL(CRT), each of the N ORP* systems chooses

its decision at time t by calling CRT. At each time slot, the
decision of the ORP system is the summation of decisions
of the N parallel ORP* systems. PARL(CRT) for ORP with
∆/δ ∈ Z+ is formally stated in Algorithm 2.

Algorithm 2: PARL(CRT) for ORP with ∆/δ ∈ Z+

1 Let N = ∆/δ;
2 Let δ = ∆/N be the cost budget of the ith ORP*

system;
3 Set pn(0) = 0 for n ∈ [N ];
4 while t ≤ T do
5 For n ∈ [N ], qn(t− 1) = max{pn(τ)|τ ∈ [t− 1]} ;
6 Let n∗t = arg min{qn(t− 1)|n ∈ [N ]} (ties are

broken randomly);
7 Let pn

∗
t (t) = p(t) and let pn(t) = pn(t− 1) for

n ∈ [N ] \ {n∗t };
8 For n ∈ [N ], call CRT to get decision xnt ;
9 Set xt =

∑N
n=1 x

n
t ;

10 end

In what follows, we analyze the performance of the CRT-
based PARL for ORP with ∆

δ ∈ Z+.

Theorem 3. PARL(CRT) is feasible and c · (1 + ln(θ))-
competitive for ORP with ∆/δ ∈ Z+.

Fig. 2: The idea of PARL for general ORP with cost budget
as ∆ = N · δ, is to consider it as N parallel ORP* with cost
budget as δ.
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Algorithm 3: PARL(CRT) for ORP with ∆/δ /∈ Z+

1 Let N,M be integers such that δ = M
N ∆;

2 Let ∆/N be the cost budget of the ith ORP* system;
3 Set pn(0) = 0 for n ∈ [N ];
4 while t ≤ T do
5 For n ∈ [N ], qn(t− 1) = max{pn(τ)|τ ∈ [t− 1]} ;
6 Let N̂t be the index set of the smallest M values

of qn(t− 1), n ∈ [N ] (ties are broken randomly);
7 Let pn(t) = p(t) for t ∈ T̂t and pn(t) = pn(t− 1)

for n ∈ [N ] \ N̂t;
8 For n ∈ [N ], call CRT to get decision xnt ;
9 Set xt =

∑N
n=1 x

n
t ;

10 end

The proof of Theorem 3 is found in our technical re-
port [19]. Since N is a constant, the time complexity of
PARL(CRT) is equal to that of CRT.

B. PARL for ORP with ∆/δ /∈ Z+

Next, we propose PARL for the case that ∆ is not an
integer multiple of δ, i.e., ∆/δ /∈ Z+. The PARL requires
that ft(xt), t ∈ [T ] to be concave when ∆/δ /∈ Z+. The
concavity assumption of utility functions is from the law of
diminishing marginal returns [20] and is true in a wide range
of applications, e.g. the revenue function is concave on the
inventory consumption [5]. From [21], the QoS is a concave
and differentiable function of resource allocated to the server.

For any ∆/δ and any ε > 0, there exist M,N ∈ Z+ such
that |δ− M

N ∆| < ε. Therefore, Let M,N be the integers such
that |δ − M

N ∆| is sufficiently close to 0. Similar to the idea
of Algorithm 2, we consider the system as N parallel ORP*
systems where the total cost budget of each subsystem is ∆/N .
pn(t) represents the input of the ith ORP* system at time slot
t, and xnt is the decision of the nth ORP* system at time
slot t. We update pn(t), n ∈ [N ] as follows. Let qn(t) =
max{pn(τ)|τ ∈ [t]}. At each time slot t, use N̂t to represent
the index set of the smallest M values of qn(t− 1), n ∈ [N ].
At the beginning of each time slot t, let pn(t) = p(t) for
t ∈ N̂t and pn(t) = pn(t−1) for t /∈ N̂t. Under PARL(CRT),
decisions of the N parallel ORP* systems are given by CRT,
and the decision of the ORP system is xt =

∑
n∈[N ] x

n
t .

PARL(CRT) for ORP with ∆
δ /∈ Z+ is formally stated in

Algorithm 3.

Theorem 4. PARL(CRT) is feasible and c · (1 + ln(θ))-
competitive for for ORP with ∆/δ /∈ Z+ and concave utility
functions.

The proof of Theorem 4 is similar to that of Theorem 3,
so we omit it due to space limitation. In addition, for ORP
with ∆

δ /∈ Z+, the time complexities of PARL(CRT) is equal
to that of CRT.

V. PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate the
performance of the proposed algorithms using real-world data.
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Fig. 3: Comparison of QoS of CRT and CR-Pursuit for ORP*
under the four real-world traces.

A. Simulation Setup

We consider an enterprise renting a given kind of virtual
machine from a cloud computing company, e.g., Amazon
Elastic Compute Cloud, to perform some computational jobs.
The unit price of the given kind of virtual machine is time-
varying [4] as shown in Figure 1. We set the length of each
time slot to be a day. Let ut be the unit price of the given
type of virtual machine at time slot t. At the beginning of each
day, the enterprise gets access to an imprecisely estimated time
average unit price of the current day using a given method,
e.g., methods by [22]. Let ût be the imprecisely estimated
unit price of time slot t. The imprecisely estimated unit price
has a parameter E defined as E , maxt∈[T ] |(ut − ût) /ût|.
E measures the maximum error of the imprecisely estimated
prices. Parameter E is known in advance, and we set E = 0.1
in the following simulations. The online decision of time
slot t, xt, represents the amount of money spent on renting
cloud virtual machines at time slot t. The amount of rented
virtual machine (in machine hours) at time slot t is utxt.
From the definition of E, utxt is upper bounded and lower
bounded by ût(1 + E)xt and ût(1 − E)xt, respectively. The
predicted unit price at each time slot t is randomly drawn from
[ut/(1− E), ut/(1 + E)].

The quality of service at time slot t, denoted by yt, is defined
as the amount of machine hours available at time slot t. That
is, yt = ft(xt) = utxt. At the beginning of each time slot t,
the enterprise only knows that ft(xt) is upper bounded c ·p(t)
and lower bounded by p(t)xt, where c = 1+E

1−E and p(t) =
ût(1 − E). We set θ as max{ut|t ∈ [T ]}/min{ut|t ∈ [T ]},
and θ is known in advance.

In the simulations, we use real-world prices of four types
of spot instances from Amazon Elastic Compute Cloud [4] as
shown in Figure 1. Trace 1 is the prices of EC2 spot instance
with a type of ’m4.xlarge’ in location ”us-east-2b”. Trace 2 is
the prices of EC2 spot instance with a type of ‘x1e.32xlarge’
in location ”us-east-2a”. Trace 3 is the prices of EC2 spot
instance with a type of ‘i3en.2xlarge’ in location ”us-east-2c”.
Trace 4 is the prices of EC2 spot instance with a type of
‘i2.8xlarge’ in location ”us-east-2a”.

The baseline is CR-Pursuit [5], which is dedicated for online
optimization problems with inventory constraints. Since CR-
Pursuit requires ft(·) precisely at the beginning of time slot t
for choosing decisions, we assume the accurate price ft(·) is
known to CR-Pursuit at the beginning of time slot t, which is
a stronger assumption compared to our proposed algorithms.
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Fig. 4: QoS of PARL(CRT) and PARL(CR-Pursuit) using (a) trace 1, (b) trace 2, (c) trace 3, and (d) trace 4.

B. Simulation Results

First, we apply CRT and CR-Pursuit to ORP*. We compare
the machine hours got by CRT and CR-Pursuit under the
four real-world traces in Figure 1. We normalize all machine
hours (QoS) by the corresponding optimal offline values. As
shown in Figure 3, although CR-Pursuit knows ft(·) precisely
at the beginning of time slot t, CRT has higher QoS than
CR-Pursuit under all the four real-world traces, which verifies
the theoretical result that CRT outperforms CR-Pursuit under
all possible input utility functions.

Next, we apply CRT-based and CR-Pursuit-based, i.e.,
PARL(CRT) and PARL(CR-Pursuit), to ORP with δ ≤ ∆.
We set N = 20 and δ = M

N ∆. We compare the performance
of the algorithms under M = {1, 2, · · · , 20}. We normalize
all machine hours (QoS) by the corresponding optimal offline
values. As shown in Figure 4, the QoS of PARL(CRT) is
higher than that of PARL(CR-Pursuit) under all the four real-
world traces and M = {1, 2, · · · , 20}. EXP has a constant
QoS under all the four traces because decisions under EXP is
static to M/N , the ratio of δ to ∆.

VI. CONCLUSION

In this paper, we study the online cloud resources pro-
visioning problem under cost budget named ORP. Under
ORP, utility functions can be non-convex and non-concave.
In addition, ORP does not require explicit utility functions.
We design an algorithmic framework named CRT for ORP*, a
spacial case of ORP. In addition, we provide a scheme named
PARL to solve general ORP based on CRT. We prove the
competitive ratios of the proposed algorithms are c(1+ln(θ)),
where the optimal competitive ratio is lower bounded by
1 + ln(θ) and c is small in lots of applications. Numerical
results using real-world data show that the proposed algorithms
outperform existing baselines significantly.
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