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Abstract—Adaptive charging can charge electric vehicles (EVs)

at scale cost effectively, despite of the uncertainty in EV arrivals.

We formulate adaptive EV charging as a feasibility problem

that meets all EVs’ energy demands before their deadlines

while satisfying constraints in charging rate and total charging

power. We propose an online algorithm, smoothed least-laxity-

first (sLLF), that decides the current charging rates without the

knowledge of future arrivals and demands. We characterize the

performance of the sLLF algorithm analytically and numerically.

Numerical experiments with real-world data show that it has a

significantly higher rate of feasible EV charging than several

other existing EV charging algorithms. Resource augmentation

framework is employed to assess the feasibility condition of

the algorithm. The assessment shows that the sLLF algorithm

achieves perfect feasibility with only a 7% increase in the maximal

power supply of the charging station.

Index Terms—Power generation scheduling, Scheduling, Road

vehicle power systems, Resource management, Battery chargers

I. INTRODUCTION

T
HE proliferation of electric vehicles (EVs) is expected to
accelerate for many years to come. EV charging at scale,

however, presents a tremendous challenge as uncontrolled
EV charging may strain the power grid and cause voltage
instability. One way to mitigate the impact and stabilize the
power grid as well as to manage uncertainty in the energy
supply from renewable energy resources such as wind power
and solar energy is by exploiting the flexibility in charging
time and rate. To exploit and optimize this flexibility, many
EV charging algorithms have been proposed and they can be
categorized as either offline or online algorithms.

The offline algorithms require complete information on all
EVs to decide the charging rates, e.g., [1]–[5]. Yet, information
on future EV arrivals may not be available or expensive to
obtain, which motivates the development of online algorithms,
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e.g., [6]–[11]. The optimum charging rate is obtained by solv-
ing an optimization problem in which various novel optimiza-
tion techniques can be implemented (e.g., [12]–[15]), including
linear programming approaches (e.g., [11], [16]). To reduce
the computational complexity and memory usage, sorting or
bisection based methods (e.g., earliest-deadline-first [17], [18],
least-laxity-first [17], and Whittle’s index policy [8], [19])
are often employed. These algorithms assume that the future
information of the vehicle arrival is predictable and all of the
instances are feasible. However, an online algorithm, which
uses only information from EVs present at the charging station
to decide their charging rates, may not produce a solution
that satisfies all the constraints even when all EVs’ demands
can be satisfied. Thus, the efficacy of these online algorithms
still depends on the accurate prediction of EV arrivals and
energy demands that is difficult to obtain. Moreover, these
algorithms require temporal coordination across time among
a large number of EVs which is hard.

In view of these limitations, we investigated low-complexity
EV charging that does not require prediction of EV ar-
rivals/demands or temporal coordination. We first formulated
the charging rate allocation as a feasibility problem to satisfy
the energy demands of all EVs before their departure under
constraints of individual maximum charging rate of every
EV and the total available power supply. We then proposed
an online algorithm, the smoothed least-laxity-first (sLLF),
based on the classic least-laxity-first (LLF) with an improved
success rate in achieving feasibility, that decides on the current
charging rates based only on the information up to the current
time. The sLLF algorithm makes the best possible decision
by maximizing the minimum resulting laxity for the next
time among the EVs currently in the system, so it can best
accommodate arbitrary future EV arrivals. Here, laxity can be
seen as the feasibility margin for EV charging and is defined as
the EV’s remaining time at the charging station decreased by
the time needed to be fully charged at the maximum charging
rate.

Cost related to the installation, replacement, and develop-
ment of both the infrastructure of a charging station including
power generation and the battery of an EV is also a factor
to be considered in a charging algorithm [20]. Generally, the
algorithm needs to adhere the limitation of the resources while
still producing a feasible solution [13]. Thus, the feasibility
condition of an algorithm can be assessed by characterizing
the minimum amount of additional resources (i.e., total power
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supply and charging rates) that will allow the algorithm to
produce a feasible solution, assuming all EVs’ demands can
be satisfied. In this study, the feasibility condition of the
sLLF algorithm is analyzed using the resource augmentation
framework. Resource augmentation is a prominent analysis
framework for analyzing the performance of online algorithms
for multiprocessor scheduling [21]–[27]. We apply this frame-
work to the EV charging problem that can be viewed as
a deadline scheduling problem by considering chargers as
processors and EVs with certain energy demand as jobs. In
our setting the power limit is time-varying, the maximum rates
are heterogeneous, and the power limit may not necessarily be
an integer multiplication of the maximum rate. To the best of
our knowledge, our work is the first to analyze EV charging
algorithms utilizing the resource augmentation framework. We
also believe that this is the first extension of the framework into
the cases for heterogeneous processors with a time-varying
number of arrivals.

We further carried out numerical experiments using real-
world datasets collected from Googles facilities in Mountain
View (Google mtv) and Sunnyvale (Google svl) as well as
the adaptive charging network (ACN) testbed we deployed at
California Institute of Technology (Caltech), called CAGarage.
At Caltech ACN, each EV arrives at a charger with energy
demand and departure time. The charging facility also has a
time-varying total power supply. The ACN performs real-time
sensing, communication, and control using the profiles of each
EV (including energy demand, departure time, and maximum
charging rate) to decide the charging rate of each EV. See [28],
[29] for more details on the Caltech infrastructure and [30] on
the charging data.

The rest of the paper is organized as follows: Section II
introduces the system model and proposes the sLLF algorithm;
the performance of the sLLF algorithm is analyzed via the pro-
cedure describes in Section III; then the result and discussion
of the performance analysis are presented in Section IV.

II. MODEL AND ALGORITHM

A. System Model

In this study, we consider a system with one charging station
that serves a set of EVs, indexed by i2V= {1, 2, 3, · · ·}. We
use a discrete-time model where time is divided into slots of
equal sampling intervals, indexed by t 2 T= {0, 1, 2, · · · ,T}.
EV i arrives at the charging station with an energy demand ei at
time ai, and departs from the station at time di. Each EV leaves
at its departure time regardless of its charging conditions. We
assume that there is an unlimited number of charging slots.
However, we limit the availability of the power supply. This
assumption is applicable for most slow chargers including
ACN [28]. During its stay at the station, the EV is charged at a
rate (or power) of ri(t)� 0, ai  t < di. For convenience, since
the rate is adjusted at a discrete-time which make the value
of the charging rate of vehicle i at a given time is equal to
the energy transmitted to the vehicle, we extend the definition
of ri(t) to the entire temporal domain such that the notation
ri(t) can be interpreted as both the charging rate of and the
energy transmitted into the vehicle i at time t. We denote the

set of the remaining EVs in the charging station at time t as
Vt = {i 2 At : ai  t < di} and the remaining energy demand
of EV i at time t as ei(t). The notations are summarized in
Table I.

To account for the limitations in the charger or battery of
an EV, each EV i can only be charged up to a peak rate, r̄i:

(
0  ri(t) r̄i, t 2 [ai,di), i 2 V

ri(t) = 0, t /2 [ai,di), i 2 V

where r̄min  r̄i  r̄max, i 2 V

(1)

To account for the limitations in the power grid or station,
the charging station has a (possibly time-varying) power limit,
P(t), such that1

Â
i2V

ri(t) P(t), t 2 T

where 0  Pmin  P(t) Pmax

(2)

Finally, every EV’s energy demands need to be satisfied2

Â
t2T

ri(t) = ei, i 2 V (3)

The charging problem instance is then defined as a quintuple
I= {ai,di,ei, r̄i;P(t)}i2V,t2T . The primary goal of EV charg-
ing is to satisfy every EV’s energy demands under the above
power supply and peak charging rate constraints (Eqs. (1)–(3)).

Definition 1 (feasible instance). An EV charging problem

instance I is offline feasible if there exist charging rates

r = {ri(t) : i 2 V, t 2 T} that satisfy Eqs. (1)–(3).

Because Eqs. (1)–(3) are affine, verifying the feasibility of an
EV charging instance is a linear programming (LP) problem
for which many efficient algorithms exist.

TABLE I
NOTATIONS

notation description

V set of EVs in the system
Vt set of EVs remain in the charging station at time t

T set of the system’s discrete-time
ai arrival time of EV i

di departure time of EV i

ei energy demand of EV i 2 V
ei(t) remaining energy demand of EV i at time t 2 T
ri(t) charging rate of or energy transmitted into EV i at time t

P(t) power limit of the charging station at time t

I EV charging problem instance

B. Online Scheduling

In practice, information of the energy demand and departure
time of an EV is only available after its arrival. Consequently,
the charging station need to employ an online algorithm to
determine the current charging rate of EV i at time t, ri(t),

1All EVs at the charging station can be simultaneously charged as long as
Eqs. (1) and (2) are satisfied.

2The actual constraint in ACN is Ât2T d ri(t) = ei, i 2 V, where d is the
sojourn time in unit of hours of sampling time intervals, ei has unit of kWh,
ri(t) has unit of kW [28]. Since ri(t) can always be rescaled according to d ,
we set d = 1 without loss of generality.
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given information only up to the current time by mapping it
into

It = {ai,di,ei(t), r̄i;P(t)}
i2Vt ,tt

where ei(t) = ei �
t�1

Â
j=0

ri( j)
(4)

Definition 2 (online algorithm). An online algorithm is a

sequence of functions, A = {At}, where each function, At :
It ! r(t), maps the information up to the current time, It , to

the current charging rates, r(t) = {ri(t)}i2Vt
.

Definition 3 (feasibility of an algorithm). An (online) algo-

rithm, A, is (online) feasible on instance I if it gives charging

rates that satisfy constraints defined in Eqs. (1)–(3).

For an online algorithm to be feasible, it must be online
feasible for all offline feasible instances. However, In general,
there does not exist an online algorithm that is feasible on all
offline feasible instances. In this paper, we investigate the cases
in which online feasibility can be guaranteed with additional
assumptions.

C. Smoothed Least-Laxity-First Algorithm

Our proposed online algorithm, the sLLF algorithm, is an
improvement from the classic LLF algorithm [31]. We can
see laxity as a measure for the flexibility (or urgency) in the
charging process of an EV.

Definition 4 (laxity). The laxity of an EV i 2 V at time t 2 T
is defined as the remaining time of the vehicle in the charging

station minus the minimum remaining time needed to be fully

charged
3

i.e.,:

`i(t) =

(
[di � t]+� ei(t)

r̄i
, t � ai

+•, t < ai

where [·]+ denotes as the projection onto the set R+ of non-

negative real numbers.

Notice that for t < di, `i(t +1) = `i(t)�
⇣

1� ri(t)
r̄i

⌘
. Here, we

can rewrite Eq. (1) as 0 ri(t)
r̄i

 1 which suggests that laxity of
EV i is monotonically decreasing at ai  t < di. Then, Eq. (3)
implies that, for t � di, ei(t) = 0, i 2 V which means that for
all t � di, `i(t) = [di � t)]+� ei(t)

r̄i
= 0. Therefore, the feasibility

conditions from Definition 3 implies that:

Proposition 1. The algorithm A that satisfy constraints (1)
and (2) is feasible on an instance I if and only if A gives

charging rates that result in non-negative laxity for all EVs,

i.e., `i(t)� 0, 8i 2 V, t 2 T.

Proposition 1 suggests that the smallest laxity among all
EVs can serve as a measure of the distance from infeasibility.
A naive approach is to charge EVs starting from those with
the least laxity, i.e., the LLF algorithm. However, the LLF
algorithm may compromise the feasibility of certain offline
feasible instances (see Section IV). The LLF algorithm also

3For convenience, laxity is defined on the whole temporal domain T.

cause excessive preemption and oscillations in the charging
rate4, which may reduce the lifetime of certain batteries
(e.g., Li-ion) [10]. To eliminate these drawbacks, we propose
an alternative approach by maximizing the minimum laxity
among all EVs with the charging rate at time T , r(T ) =
{ri(T ) : 8i 2 V}, as the design variable in order to maximize
the feasibility margin, maxr(T ) mini2V `i(T ).

However, because the solution to the above maximization
problem may not be unique, we considered the following
problem to produce a unique solution:

r(T ) = argmax
r(T )

Â
i2V

r̄i f (`i(T ))

such that (1), (2), and (3)
(5)

where f is any function that is twice continuously differen-
tiable, strictly concave, and monotonically increasing. Here,
if an instance I is offline feasible, then there exists certain
charging rates that achieve `i(T ) = 0,8i 2 V, which yields
Âi2V f (`i(T )) = Âi2V f (0). Since the laxity is monotonically
decreasing at any t 2 T, such charging rates also satisfy
Proposition 1 which implies that Problem (5) is feasible on
instance I, i.e.,:

Remark 1. Problem (5) is feasible for any offline feasible

instance.

Notice that Problem (5) is an offline problem that requires
the information of all vehicles. To obtain an (online) solution
without the information of incoming EVs, we approximate
(5) using the available causal information, by successively
maximizing the laxity

max
r(t)

Â
i2V

r̄i f (`i(t +1))

such that (1), (2), and ri(t) ei(t), i 2 Vt

(6)

at each time t 2 T for given `i(t), i 2 Vt .5 Problem (6) also
maximizes the minimum laxity at time t+1, mini2Vt

`i(t+1),
and thus maximizes the feasibility margin at time t.

To solve Problem (6), we first need to look at the Karush-
Kuhn-Tucker (KKT) conditions of the problem:

ri(t)� 0 i 2 Vt (7)
ri(t) min(ei(t), r̄i) i 2 Vt (8)

Â
i2Vt

ri(t) P(t) i 2 Vt (9)

f
0 (`i(t +1))+ l̄i �l

i
+V= 0 i 2 Vt (10)

l
i
� 0, l̄i � 0, V� 0 i 2 Vt (11)

l
i
ri(t) = 0, l̄i {ri(t)�min(ei(t), r̄i)}= 0 i 2 Vt (12)

4For example, consider a system of two EVs, where `1(0) = 1.25, `2(0) =
0.75 and r̄1 = r̄2 = P(t) = 1, t 2 T. EV 1 and EV 2 will be charged according
to (r1(0),r2(0)) = (0,1), (`1(1),`2(1)) = (0.25,0.75); (r1(1),r2(1)) = (1,0),
and so on. In this example, both EV switches in-between charging and not
charging.

5For more complex form of power limits, in Problems (5) and (6), the power
constraints in Eq. (2) can be replaced by Ar(t) e.w. P(t), for element-wise
inequality and positive matrix A. Remark 1 also holds for Ar(t)e.w. P(t).
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where l
i
, l̄i, and v are the dual variables for constraints (7),

(8), and (9) respectively. Consider three mutually exclusive
cases:

• ri(t) = 0 that leads to l̄i = 0 and

ri(t)

r̄i

= f
0�1(�v)� `i(t)+1�l

i
 f

0�1(�v)� `i(t)+1
(13)

• ri(t) 2 {0,min(ei(t), r̄i)} which implies l̄i = l
i
= 0; ob-

tained from (12) (complementary slackness). Substituting
l̄i = l

i
= 0 into (10), we obtain

ri(t)

r̄i

= f
0�1(�v)� `i(t)+1 (14)

• ri(t) = min(ei(t), r̄i) that leads to l
i
= 0 and

ri(t)

r̄i

= f
0�1(�v)� `i(t)+1+ l̂i � f

0�1(�v)� `i(t)+1
(15)

Here, the inverse of f
0 exists because f

0 is strictly concave,
strictly increasing, and twice continuously differentiable.

Defining an variable L(t) = f
0�1(�v), the following can be

obtained:

Proposition 2. With f strictly concave, strictly increasing,

and twice continuously differentiable, a solution to (6) can be

obtained by combining Eqs. (13)–(15):

r
⇤
i
(t) = [r̄i (L(t)� `i(t)+1)]min(r̄i,ei(t))

0 , i 2 Vt (16)

where [x]b
a

denotes the projection of the scalar x on interval

[a,b] and r
⇤
i
(t) is the resulted ri(t). The solution is then

attained at the boundary

Â
i2Vt

r
⇤
i
(t) = Â

i2Vt

[r̄i (L(t)� `i(t)+1)]min(r̄i,ei(t))
0

= min

 
P(t), Â

i2Vt

min(r̄i,ei(t))

! (17)

For EV i 2 Vt with r̄i  ei(t), we obtain charging rate from
Eq. (16) that makes `i(t+1) = [L(t)]`i(t)

`i(t)�1. Hence, L(t) can be
considered as a threshold of `i(t +1). Since r

⇤
i
(t) in Eq. (16)

is an increasing function of L(t), a binary search can be
employed to find the threshold L(t) in Eq. (17). Given L(t), the
charging rates r

⇤
i
(t), i 2 Vt is then determined using Eq. (16).

This procedure is a scalable algorithm that we formally state
in Algorithm 1, and name it as the smoothed least-laxity-first

(sLLF) algorithm.

Algorithm 1: smoothed least-laxity-first (sLLF)
for t 2 T do

1) Update set of EVs, Vt , and laxity, `i(t) for i 2 Vt .
2) Obtain L(t) that solves Eq. (17) using bisection.
3) Charge according to rates r

⇤
i
(t) in Eq. (16).

We found that the computational complexity of this sLLF
algorithm at each time t is O

�
|Vt |+ log

� 1
d
��

, where d is the

level of tolerable error. We need O(|Vt |) operations to update
the laxity of vehicles, and O

�
log
� 1

d
��

operations for binary
search for L(t). We also note that the sLLF algorithm possesses
the following properties:

1) Persistence
Lemma 1. Under the sLLF algorithm, if there exist two

EVs i, j 2 V such that

`i(t) ` j(t) but `i(t +1)> ` j(t +1) (18)

then either one of the following holds:

(
t � di & ri(t) = 0
t < di & t < d j & e j(t +1) = 0 & ri(t) 6= 0

(19)

Proof of this Lemma can be found in [32, Section II-C].
2) Fairness

From Lemma 1, the solution of (6) does not de-
pend of the specific choice of the value function f

as long as f is concave, strictly increasing, and has
a derivative whose inverse function is well-defined.
Without loss of generality, we consider f (x) = log(x).
Since non-negative weighted sum and composition
with an affine mapping preserve concavity, C (r(t)) =

Âi2Vt
r̄i f

⇣
li(t)�1+ ri(t)

r̄i

⌘
is a concave function of

r(t) =
⇥
r1(t),r2(t), · · · ,r|Vt |(t)

⇤
T . Let r̂(t) 6= r(t) be any

rates that satisfy constraints in Eqs. (1) and (2), where
ˆ̀
i(t), i 2 Vi be the resultant laxity, then, from the

first-order-condition of concave functions, C (r̂(t)) �
C (r(t))+ (r(t)� r̂(t))T —C (r(t)) � 0. Since r(t) is the
optimal solution, then

0 C (r(t))�C (r̂(t)) (r(t)� r̂(t))T —C (r(t))

 Â
i2Vt

r̄i

`i(t)� ˆ̀
i(t)

`i(t +1)

where the derivative above is taken over r(t) for
f (`i(t +1)) = log(`i(t +1)). On the other hand, if ˆ̀

i(t+
1)> `i(t+1) for some EV i 2 Vt , then ri(t)< r̂i(t) r̄i.
This can only happen when `i(t+1)� L(t) or `i(t+1)>
L(t). As EV i in r̂i(t) receives more energy than that in
ri(t), there exists an EV j that receives less energy in
r̂ j(t). Any EV j that receives non-zero energy satisfies
ˆ̀
j(t +1) L(t +1) = `i(t +1) and ˆ̀

j(t +1)< ` j(t +1).
Corollary 1. Given the past charging rate r

t�1
, the

sLLF algorithm finds a current charging rate r(t) that is

both proportionally and max-min fair to one-step-ahead

laxity `i(t +1) with ˆ̀
i(t +1) as another laxity produced

by a charging rate satisfying the constraints in (6):
• weighted proportional fairness:

Â
i2Vt

r̄i

ˆ̀
i(t +1)� `i(t +1)

`i(t +1)
 0 (20)

• max-min fairness: if ˆ̀
i(t + 1) > `i(t + 1) for some

EV i 2Vt , then there exits EV j 2Vt such that
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ˆ̀
j(t +1) `i(t +1) and ˆ̀

j(t +1)< ` j(t +1) (21)

III. PERFORMANCE ANALYSIS

We compare the performance of our proposed sLLF algo-
rithm with several common scheduling algorithms and assess
its feasibility condition utilizing the resource augmentation
framework.

A. Resource Augmentation Framework

There are two extreme cases in which online algorithms
can be feasible for any offline feasible instances: r̄i ! •
8i 2 V and P(t) ! •. In the first case, r̄i ! • 8i 2 V ⌘
P(t)  mini2Vt

r̄i 8t 2 T, the charging problem is identical to
the single processor preemptive scheduling problem where
the processing capacity is time-variant. Here, the earliest-
deadline-first (EDF) algorithm is feasible for any offline fea-
sible instances [18]. In the second case, P(t) ! • ⌘ P(t) �
Âi2Vt

r̄i(t) 8t 2T, the sLLF algorithm is feasible for any offline
feasible instances. Beyond these two extreme cases, no online
algorithm can be feasible on all offline feasible instances [17].

From the two cases mentioned above, we can observe that
if more resources (e.g., P(t) and r̄i) are allowed, an otherwise
infeasible problem may become online feasible under an
online algorithm. Based on this, we performed a resource
augmentation study to characterize the minimum amount of
additional resources that will allow an algorithm to produce a
feasible solution. Specifically, we analyzed the performance
of the sLLF algorithm by adding more (minimum) either
power supply (power augmentation) or both power supply
and peak charging rate (power+rate augmentation). The former
augmentation allows more EVs to be charged simultaneously,
while the latter allows faster charging. These two augmentation
approaches are qualitatively different and provide complemen-
tary insights into the behavior of the sLLF algorithm. In our
setting, the power limit is time-varying, the maximum rates
are heterogeneous, and the power limit may not necessarily
be integer multiplication of the maximum rate. Consequently,
value of augmentation also depends on the interplay between
Pmin, Pmax, r̄min, and r̄max, which complicates the analysis.

1) Power Augmentation: In this augmentation, we allowed
online algorithm to utilize e more power such that

P
online(t) = (1+ e)P(t) but r̄

online

i
= r̄i

We will call this augmentation as e-power augmentation,
where

Definition 5. [e-power augmented instance] Given an EV

charging instance I = {ai,di,ei, r̄i;P(t)}i2V,t2T , the instance

under e-power augmentation is defined as {ai,di,ei, r̄i;(1+
e)P(t)}i2V,t2T .

Definition 6 (e-power feasibility). An online algorithm A is

e-power feasible if A is feasible on the e-power augmented

instances Ip(e) generated from any offline feasible instance

I.6

Unfortunately, there is no online algorithm that e-power
feasible for any finite e > 0 [22]7. However, under a mild
assumption, the e-power feasibility condition can be obtained
for a finite e . Assume that the energy demand of each EV
is bounded by X and that the inter-arrival time between
consecutive arrivals is greater than N, i.e.,:

ei  X and |ai �a j|> N ; i, j 2 V (22)

where, the value of N can be controlled by choosing appro-
priate sojourn time for a sampling intervals (the shorter the
sojourn time, the smaller the value of N) and the value of X can
be obtain from maximum battery capacity for common EVs.
Then, it can be proven (see [32, Appendix A]) that we can
characterize the relation between N and the sufficient amount
of resource augmentation e as follows:

Theorem 1. If both conditions in (22) hold, then the sLLF

algorithm is e-power feasible with

e =
Pmax

Pmin

 
logj

 p
5X

NPmax
+

1
2

!
+2

!
�1

where j ⇡ 1.61803 is the golden ratio.

Now, if the inter-arrival time is equal to N and the power
demand is equal to X , then the incoming energy demand per
unit time is X

N
. Since the total power supply is Pmax per unit

time, N should be at least X

Pmax
for offline feasibility which

is a mild assumption. With this, we then can apply a special
condition to Theorem 1:

Corollary 2. For constant power limit P(t) = P, t 2 T, and

N � X

Pmax
, then

e  logj

✓p
5+

1
2

◆
+1 ⇡ 3.091639884

Corollary 2 is obtained from substituting Pmax = Pmin = P

into the bound of Theorem 1, and upper bounding using N �
X

P
. From Corollary 2, the sLLF algorithm is approximately 3-

power feasible. Thus, under this condition, theoretically, the
sLLF algorithm can achieve 100% feasibility by increasing the
available power supply three times.

2) Power+Rate Augmentation: In this case, online algo-
rithm is allowed to utilize e more power and higher maximum
charging rate such that

P
online(t) = (1+ e)P(t) and r̄

online

i
= (1+ e)r̄i

6Alternatively, the (minimum) value of e can also be interpreted as the
constraints on instances that are online feasible. That is, given the orig-
inal resource P(t), r̄i(t), the algorithm is online feasible for any instances
I= {ai,di,ei, r̄i;P(t)/(1+ e)}

i2V,t2T that is offline feasible given the reduced
resource P(t)/(1+e), r̄i(t). Large e restricts possible instances, thus less likely
to be online infeasible.

7It is shown in [22] that the LLF algorithm is not e-power feasible for any
e > 0 for uniform processors and time-invariant number of processors. Since
their setting is a special case of our setting, the same results extend to our
setting.
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We will call this augmentation as e-power+rate augmentation,
where

Definition 7. [e-power+rate augmented instance] Given

an EV charging instance I = {ai,di,ei, r̄i;P(t)}i2V,t2T , we

define the e-power+rate augmented instance as {ai,di,ei,(1+
e)r̄i;(1+ e)P(t)}i2V,t2T .

Definition 8 (e-power+rate feasibility). An online algorithm A
is e-power+rate feasible if A is feasible on the e-power+rate

augmented instances Ipr(e) generated from any offline feasible

instance I.

However, unlike the case of power augmentation, without
any assumptions of the arrival patterns, the following apply
[32, Appendix B]:

Theorem 2. The sLLF algorithm is e-power+rate feasible

with

e = max
i2V

✓
max

t1,t22[ai,di]

P(t1)

P(t2)
� max

t2[ai,di]

r̄i

P(t)

◆

Here, solving the maximization problem in Theorem 2, theo-
retically, the sLLF algorithm will achieve a 100% feasibility
with an e increase in both available power supply and maxi-
mum charging rate.

B. Experimental Setup

We employed trace-based simulation on real EV datasets
from the ACN deployment (CAGarage) as well as Google’s
facilities in Mountain View (Google mtv) and Sunnyvale
(Google svl) to evaluate the performance of our proposed
algorithm. The datasets contain a total of 52,362 charging
sessions over more than 4,000 charging days in 2016 at
104 locations (Table II provides a summary of the data),
an instance consists of one charging day. We compute the
minimum power capacity in which each instance is feasible by
using an offline LP, i.e., we minimize P(t) subject to Eqs. (1)–
(3), which corresponds to the minimum power supply for the
instance to be offline feasible. We used this minimum power
supply to generate an offline instance and tested if the instance
is feasible under an online algorithm.

TABLE II
datasets instances EV sojourn time (min) laxity (min)

CAGarage 92 321 (11, 720) 231 (0.1, 660)
Google mtv 3793 149 (10, 720) 35 (0.001, 694)
Google svl 246 152 (11, 720) 38 (0.02, 676)

Statistics of the EV charging instances that show the average of the
sojourn times and laxity in minutes unit; the minimum and maximum
values are indicated inside the brackets.

We compared the performance of the sLLF algorithm
against several common heuristic online scheduling algo-
rithms: earliest-deadline-first (EDF) [17], [18], least-laxity-
first (LLF) [17], equal/fair share (ES) [33], remaining en-
ergy proportional (REP) [18], and an online linear program
(OLP) [11]. The implementation of these algorithms for the
current problem is summarized in [32, Section III-B].

IV. PERFORMANCE EVALUATION AND COMPARISON

In this section, we will evaluate the performance of the sLLF
algorithm without (Section IV-A) and with (Section IV-B)
resource augmentation. For this purpose, we define the success
rate of an algorithm as:

Definition 9 (success rate). The success rate of an algorithm

is the ratio of online feasible instances under the algorithm to

all existing instances.

A. Without Resource Augmentation

Fig. 1. Bar chart showing the success rate of the utilized algorithms
in finding a feasible online schedule from different datasets without
resource augmentation. The displayed values are rounded to three
significant figures.

(a) (b)

(c) power augmentation (d) power+rate augmentation

Fig. 2. Plots of success rate in finding a feasible online schedule
without (top) and with (bottom) resource augmentation.

Comparing the success rate of the sLLF algorithm against
different algorithms, we found that our proposed algorithm
achieves a more uniform high success across different datasets
(see Fig. 1). From Fig. 1 we can also see that the EDF, ES,
and REP algorithms perform much worse in terms of finding
feasible schedules as expected because these algorithms do not
consider the deadline, maximum charging rate, and remaining
energy of each EV simultaneously which are necessary to find
the feasibility. We can also see that, despite its similarity, the
LLF algorithm achieve lower success rate than the sLLF algo-
rithm that suggests the importance of maximizing minimum
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laxity to eliminate the infeasibility of certain offline feasible
instances in the LLF algorithm (see Section II-C).

Moreover, although the OLP algorithm achieves a higher
success rate in finding a feasible online schedule from
Google mtv dataset, it requires solving LP problem at ev-
ery time-step. With the currently available LP solver, the
computational complexity for solving LP problem of size n

will be greater than O
�
n

2
�

[34]. Thus, at every given time t

the OLP algorithm has computational complexity higher than
O

⇣
|Vt |2

⌘
which is computationally more expensive than the

sLLF algorithm that has a complexity of O
�
|Vt |+ log

� 1
d
��

.
Furthermore, we observed that the minimum normalized

laxity and the maximum ratio between EV sojourn times have
high correlations with the success rate of the algorithms. Here,
the maximum ratio between EV sojourn times is defined as the
maximum ratio between the longest and shortest EV sojourn
times in the instances while the minimum normalized laxity of
an EV is defined as the laxity divided by the EV sojourn times,
`i(ai)
(di�ai)

. To study this, we categorized the dataset we have into
different sets and the success rate of the algorithms based on
these different data categories can be found in Figs. 2a and 2b.

Fig. 2a shows that as the maximum ratio between EV
sojourn times increases, all algorithms considered have de-
creased success rates. This indicates that a large degree of
variation in the sojourn time may decrease the performance of
online scheduling algorithms. From the Fig. 2a we can also
see that the sLLF algorithm is least sensitive to the changing
of the maximum ratio between EV sojourn times while still
maintaining a high success rate. This indicates a potential
benefit of the sLLF algorithm against a large variation of
EVs’ sojourn time that common in real-world applications.
Meanwhile, Fig. 2b shows that higher minimum normalized
laxity improves the algorithms’ success rate which implies
that shorter sojourn time is more desirable to improve the
performance of the scheduling algorithms. The result indicates
that larger laxity gives a greater advantage in the scheduling
system which is expected as a less urgent environment is easier
to maintain. As we can see in Fig. 2b, the sLLF algorithm has
one of the highest success rates for all minimum normalized
laxity even when the minimum normalized laxity is small. This
implies another potential benefit of the sLLF algorithm in a
high urgency scheduling environment such as in some public
charging stations.

B. With Resource Augmentation

We analyzed the performance of the online algorithms
with resource augmentation in a) power supply and b) both
power supply along with peak charging rate to gain further
insight into the algorithms’ behavior (see Figs. 2c and 2d).
As expected, the success rate of all algorithms increase with
more available resources that suggest the benefit of higher
power supply and/or peak charging rate in the scheduling
system. Although the performance of the sLLF algorithm in
the event without resource augmentation is lower than the OLP
algorithm, it can achieve a 0.95 success rate with only a 0.02
increase in resources.

TABLE III
augmentation e

REP ES EDF LLF OLP sLLF
power supply 4.61 3.65 1.39 0.07 0.28 0.07
power supply and
peak charging rate 4.61 3.24 0.54 0.05 0.28 0.05

Minimum resource augmentation to achieve a perfect success rate in
finding a feasible online schedule for all instances.

Inspecting further, we listed in Table III the minimum
resource augmentation required for each algorithm to achieve
100% feasibility for all instances. From the table, we can see
that, together with the LLF algorithm, our sLLF algorithm has
the smallest e among the algorithms considered. The proposed
algorithm can achieve perfect feasibility using only 0.07 power
augmentation which is significantly smaller than the predicted
value in Corollary 2. Thus, our proposed algorithm has the
potential in reducing the infrastructure cost for EV charging
facility which will also be beneficial in an application where
the resources are limited.

(a) LLF (b) sLLF

Fig. 3. Charging rate from two vehicles at each time step of a
hypothetical case that exaggerate the oscillation behaviour in the LLF
algorithm obtained using (a) the LLF and (b) the sLLF algorithms.

Additionally, although the LLF and sLLF algorithms have
equal e feasibility, the sLLF algorithm, as implies by
Lemma 1, does not exhibit undesirable oscillations behavior
such as can be found in the LLF algorithm (Footnote 4). To
inspect this property, we simulated a hypothetical case that ex-
aggerate the oscillation behavior in the LLF algorithm. In the
simulation we introduced two vehicles with equal maximum
charging rates that arrive and will depart at the same time
where there isn’t other vehicle present at the charging station.
The charging rate at each time step of this simulation obtained
using the LLF and sLLF algorithms can be seen in Figs. 3a
and 3b respectively. The result, agrees with Lemma 1, shows
that the sLLF algorithm eliminates the oscillation behavior that
can reduce the lifetime of certain batteries.

V. CONCLUSION

In this work, we formulated EV charging as a feasibility
problem that meets all EVs’ energy demands before departure
under the individual charging rate of each EV and the total
power resource constraints. We proposed an online algorithm,
the sLLF algorithm, that decides on the current charging
rates based on only the information up to the current time.
We characterized and analyzed the performance of the sLLF
algorithm analytically and numerically utilizing the resource
augmentation framework, where we demonstrated the first
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application of the framework for evaluating EV charging
algorithms. Here, we also extend the resource augmentation
framework for heterogeneous processors with a time-varying
number application.

Our numerical experiments with real-world datasets showed
that our algorithm has a significantly higher rate of generating
feasible EV charging than several other common EV charging
algorithms. We showed that our sLLF algorithm is able to
maintain a high success rate. The algorithm also shows its
potential benefits against a large variety of EVs’ sojourn
time that common in a real-world application and against a
high urgency scheduling environment such as in some public
charging stations; more study is needed. By finding feasible
EV charging schedules using only a small augmentation that
is also significantly less than the theoretical upper bound, our
proposed algorithm (sLLF) can significantly reduce the infras-
tructural cost for EV charging facilities. Among the algorithms
that achieve the highest success rate (i.e., the sLLF, LLF,
and OLP algorithms), our sLLF algorithm does not exhibit
undesirable oscillations such found in the LLF algorithm and
computationally cheaper than the OLP algorithm.
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